Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(16): 3683-3693, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470089

RESUMO

This paper deals with the automatic control of the trajectory of T-lymphocytes using dielectrophoretic (DEP) actuation. Dielectrophoresis is a physical phenomenon induced by a non-uniform electric field enabling application of a force on a dielectric object. In most of the cases, it is used in a passive way. The electric field is in a steady state and the force applied on the cells depends on the cell's characteristics and position inside the channel. These systems are limited as cells with similar characteristics will undergo the same forces. To overcome this issue, active devices where the electric field changes over time were developed. However, the voltages that should be applied to generate the desired electric field are mostly computed offline using finite element methods. Thus, there is a low number of devices using automatic approaches with dielectrophoretic actuation where the electric field is computed and updated in real time based on the current position of the cell. We propose here an experimental bench used to study the automatic trajectory control of cells by dielectrophoresis. The computation of the dielectrophoretic force is done online with a model based on the Fourier series depending on the cell's characteristics, position and electric field. This model allows the use of a controller based on visual feedback running at 120 Hz to control the position of cells inside a microfluidic chip. As cells are sensitive to the electric field, the controller limits the norm of the electric field while maximizing the gradient to maximize the DEP force. Experiments have been performed and T-lymphocytes were successfully steered along several types of trajectories at a speed of five times their size per second. The mean error along those trajectories is below 2 µm. The viability of the cells has been checked after the experiments and confirms that this active DEP actuation does not harm the cells.

2.
PLoS One ; 8(7): e69040, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935918

RESUMO

Old age is associated with reduced mobility of the hand. To investigate age related decline when reaching-to-lift an object we used sophisticated kinematic apparatus to record reaches carried out by healthy older and younger participants. Three objects of different widths were placed at three different distances, with objects having either a high or low friction surface (i.e. rough or slippery). Older participants showed quantitative differences to their younger counterparts - movements were slower and peak speed did not scale with object distance. There were also qualitative differences with older adults showing a greater propensity to stop the hand and adjust finger position before lifting objects. The older participants particularly struggled to lift wide slippery objects, apparently due to an inability to manipulate their grasp to provide the level of precision necessary to functionally enclose the object. These data shed light on the nature of age related changes in reaching-to-grasp movements and establish a powerful technique for exploring how different product designs will impact on prehensile behavior.


Assuntos
Dedos/fisiologia , Força da Mão/fisiologia , Mãos/fisiologia , Remoção , Desempenho Psicomotor/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Análise de Variância , Fenômenos Biomecânicos , Feminino , Fricção , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA