Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(3): e0131922, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840560

RESUMO

We report the draft genome sequences of three bacterial species isolated from freshwater ponds or features around monuments in Washington, DC, during a semester-long microbiology lab course at the George Washington University. Two of the isolates belong to potentially novel species but lost their viability and could not be revived.

2.
Proc Natl Acad Sci U S A ; 119(30): e2201285119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867817

RESUMO

Although complex interactions between hosts and microbial associates are increasingly well documented, we still know little about how and why hosts shape microbial communities in nature. In addition, host genetic effects on microbial communities vary widely depending on the environment, obscuring conclusions about which microbes are impacted and which plant functions are important. We characterized the leaf microbiota of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent host effects on specific, broadly distributed microbial species (operational taxonomic unit [OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with heritability of particular OTUs declining with their distance from the nearest hub within the microbial network. These host effects could reflect either OTUs preferentially associating with specific genotypes or differential microbial success within them. Host genetics associated with microbial hubs explained over 10% of the variation in lifetime seed production among host genotypes across sites and years. We successfully cultured one of these microbial hubs and demonstrated its growth-promoting effects on plants in sterile conditions. Finally, genome-wide association mapping identified many putatively causal genes with small effects on the relative abundance of microbial hubs across sites and years, and these genes were enriched for those involved in the synthesis of specialized metabolites, auxins, and the immune system. Using untargeted metabolomics, we corroborate the consistent association between variation in specialized metabolites and microbial hubs across field sites. Together, our results reveal that host genetic variation impacts the microbial communities in consistent ways across environments and that these effects contribute to fitness variation among host genotypes.


Assuntos
Arabidopsis , Interações entre Hospedeiro e Microrganismos , Microbiota , Folhas de Planta , Arabidopsis/genética , Arabidopsis/microbiologia , Estudo de Associação Genômica Ampla , Interações entre Hospedeiro e Microrganismos/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia
3.
New Phytol ; 235(5): 1767-1779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644021

RESUMO

Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure. The simulations matched well with observations of photosynthesis, transpiration, nonstructural carbohydrates concentrations, leaf water potential, the percentage loss of xylem conductivity, and stand-level mortality rates. The simulations suggest that seawater-induced mortality could decrease by c. 16.7% with increasing atmospheric CO2 levels due to reduced risk of carbon starvation. Conversely, rising VPD could increase mortality by c. 5.6% because of increasing risk of hydraulic failure. Across all scenarios, seawater-induced mortality was driven by hydraulic failure in the first 2 yr after seawater exposure began, with carbon starvation becoming more important in subsequent years. Changing CO2 and climate appear unlikely to have a significant impact on coastal tree mortality under rising sea levels.


Assuntos
Picea , Árvores , Carbono , Dióxido de Carbono/farmacologia , Água do Mar , Temperatura , Pressão de Vapor , Água
4.
Plant Physiol ; 187(2): 873-885, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608959

RESUMO

Sea-level rise is one of the most critical challenges facing coastal ecosystems under climate change. Observations of elevated tree mortality in global coastal forests are increasing, but important knowledge gaps persist concerning the mechanism of salinity stress-induced nonhalophytic tree mortality. We monitored progressive mortality and associated gas exchange and hydraulic shifts in Sitka-spruce (Picea sitchensis) trees located within a salinity gradient under an ecosystem-scale change of seawater exposure in Washington State, USA. Percentage of live foliated crown (PLFC) decreased and tree mortality increased with increasing soil salinity during the study period. A strong reduction in gas exchange and xylem hydraulic conductivity (Ks) occurred during tree death, with an increase in the percentage loss of conductivity (PLC) and turgor loss point (πtlp). Hydraulic and osmotic shifts reflected that hydraulic function declined from seawater exposure, and dying trees were unable to support osmotic adjustment. Constrained gas exchange was strongly related to hydraulic damage at both stem and leaf levels. Significant correlations between foliar sodium (Na+) concentration and gas exchange and key hydraulic parameters (Ks, PLC, and πtlp) suggest that cellular injury related to the toxic effects of ion accumulation impacted the physiology of these dying trees. This study provides evidence of toxic effects on the cellular function that manifests in all aspects of plant functioning, leading to unfavourable osmotic and hydraulic conditions.


Assuntos
Mudança Climática , Picea/fisiologia , Estresse Salino , Água do Mar/efeitos adversos , Árvores/fisiologia , Xilema/efeitos dos fármacos , Washington , Xilema/fisiologia
5.
Glob Chang Biol ; 27(24): 6454-6466, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34469040

RESUMO

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates. While empirical measurements of aboveground traits revealed homeostatic maintenance of plant water status and traits in response to reduced soil moisture, modeled belowground dynamics revealed that trees in the drought treatment shifted the depth from which water was acquired to deeper soil layers. These findings reveal that belowground acclimation of tree water uptake depth may buffer tropical rainforests from more severe droughts that may arise in future with climate change.


Assuntos
Árvores , Água , Carbono , Secas , Florestas , Folhas de Planta , Floresta Úmida
6.
Tree Physiol ; 41(12): 2326-2340, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014270

RESUMO

Increasing seawater exposure is causing mortality of coastal forests, yet the physiological response associated with seawater-induced tree mortality, particularly in non-halophytes, is poorly understood. We investigated the shifts in carbon and nitrogen (N) metabolism of mature Sitka-spruce trees that were dying after an ecosystem-scale manipulation of tidal seawater exposure. Soil porewater salinity and foliar ion concentrations increased after seawater exposure and were strongly correlated with the percentage of live foliated crown (PLFC; e.g., crown 'greenness', a measure of progression to death). Co-occurring with decreasing PLFC was decreasing photosynthetic capacity, N-investment into photosynthesis, N-resorption efficiency and non-structural carbohydrate (soluble sugars and starch) concentrations, with the starch reserves depleted to near zero when PLFC dropped below 5%. Combined with declining PLFC, these changes subsequently decreased total carbon gain and thus exacerbated the carbon starvation process. This study suggests that an impairment in carbon and N metabolism during the mortality process after seawater exposure is associated with the process of carbon starvation, and provides critical knowledge necessary to predict sea-level rise impacts on coastal forests.


Assuntos
Picea , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Picea/fisiologia , Água do Mar , Árvores/fisiologia
7.
Plant Physiol ; 185(4): 1682-1696, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893814

RESUMO

Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/análise , Picea/química , Picea/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Estresse Salino , Água do Mar/efeitos adversos , Causas de Morte , Salinidade , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA