Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607351

RESUMO

Dynamic interactions between the myosin motor head on thick filaments and the actin molecular track on thin filaments drive the myosin-crossbridge cycle that powers muscle contraction. The process is initiated by Ca2+ and the opening of troponin-tropomyosin-blocked myosin-binding sites on actin. The ensuing recruitment of myosin heads and their transformation from pre-powerstroke to post-powerstroke conformation on actin produce the force required for contraction. Cryo-EM-based atomic models confirm that during this process, tropomyosin occupies three different average positions on actin. Tropomyosin pivoting on actin away from a TnI-imposed myosin-blocking position accounts for part of the Ca2+ activation observed. However, the structure of tropomyosin on thin filaments that follows pre-powerstroke myosin binding and its translocation during myosin's pre-powerstroke to post-powerstroke transition remains unresolved. Here, we approach this transition computationally in silico. We used the myosin helix-loop-helix motif as an anchor to dock models of pre-powerstroke cardiac myosin to the cleft between neighboring actin subunits along cardiac thin filaments. We then performed targeted molecular dynamics simulations of the transition between pre- and post-powerstroke conformations on actin in the presence of cardiac troponin-tropomyosin. These simulations show Arg 369 and Glu 370 on the tip of myosin Loop-4 encountering identically charged residues on tropomyosin. The charge repulsion between residues causes tropomyosin translocation across actin, thus accounting for the final regulatory step in the activation of the thin filament, and, in turn, facilitating myosin movement along the filament. We suggest that during muscle activity, myosin-induced tropomyosin movement is likely to result in unencumbered myosin head interactions on actin at low-energy cost.


Assuntos
Actinas , Tropomiosina , Cálcio , Citoesqueleto de Actina , Troponina
2.
J Mol Cell Cardiol ; 188: 30-37, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266978

RESUMO

The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.


Assuntos
Ácido Glutâmico , Tropomiosina , Actinas , Actomiosina , Troponina I , Cálcio
3.
J Gen Physiol ; 155(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37249525

RESUMO

Regulation of the crossbridge cycle that drives muscle contraction involves a reconfiguration of the troponin-tropomyosin complex on actin filaments. By comparing atomic models of troponin-tropomyosin fitted to cryo-EM structures of inhibited and Ca2+-activated thin filaments, we find that tropomyosin pivots rather than rolls or slides across actin as generally thought. We propose that pivoting can account for the Ca2+ activation that initiates muscle contraction and then relaxation influenced by troponin-I (TnI). Tropomyosin is well-known to occupy either of three meta-stable configurations on actin, regulating access of myosin motorheads to their actin-binding sites and thus the crossbridge cycle. At low Ca2+ concentrations, tropomyosin is trapped by TnI in an inhibitory B-state that sterically blocks myosin binding to actin, leading to muscle relaxation. Ca2+ binding to TnC draws TnI away from tropomyosin, while tropomyosin moves to a C-state location over actin. This partially relieves the steric inhibition and allows weak binding of myosin heads to actin, which then transition to strong actin-bound configurations, fully activating the thin filament. Nevertheless, the reconfiguration that accompanies the initial Ca2+-sensitive B-state/C-state shift in troponin-tropomyosin on actin remains uncertain and at best is described by moderate-resolution cryo-EM reconstructions. Our recent computational studies indicate that intermolecular residue-to-residue salt-bridge linkage between actin and tropomyosin is indistinguishable in B- and C-state thin filament configurations. We show here that tropomyosin can pivot about relatively fixed points on actin to accompany B-state/C-state structural transitions. We argue that at low Ca2+ concentrations C-terminal TnI domains attract tropomyosin, causing it to bend and then pivot toward the TnI, thus blocking myosin binding and contraction.


Assuntos
Tropomiosina , Troponina I , Troponina I/metabolismo , Tropomiosina/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Citoesqueleto de Actina/metabolismo , Contração Muscular/fisiologia , Sarcômeros/metabolismo , Músculo Esquelético/metabolismo
4.
PNAS Nexus ; 2(3): pgad011, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896133

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder often caused by mutations to sarcomeric genes. Many different HCM-associated TPM1 mutations have been identified but they vary in their degrees of severity, prevalence, and rate of disease progression. The pathogenicity of many TPM1 variants detected in the clinical population remains unknown. Our objective was to employ a computational modeling pipeline to assess pathogenicity of one such variant of unknown significance, TPM1 S215L, and validate predictions using experimental methods. Molecular dynamic simulations of tropomyosin on actin suggest that the S215L significantly destabilizes the blocked regulatory state while increasing flexibility of the tropomyosin chain. These changes were quantitatively represented in a Markov model of thin-filament activation to infer the impacts of S215L on myofilament function. Simulations of in vitro motility and isometric twitch force predicted that the mutation would increase Ca2+ sensitivity and twitch force while slowing twitch relaxation. In vitro motility experiments with thin filaments containing TPM1 S215L revealed higher Ca2+ sensitivity compared with wild type. Three-dimensional genetically engineered heart tissues expressing TPM1 S215L exhibited hypercontractility, upregulation of hypertrophic gene markers, and diastolic dysfunction. These data form a mechanistic description of TPM1 S215L pathogenicity that starts with disruption of the mechanical and regulatory properties of tropomyosin, leading thereafter to hypercontractility and finally induction of a hypertrophic phenotype. These simulations and experiments support the classification of S215L as a pathogenic mutation and support the hypothesis that an inability to adequately inhibit actomyosin interactions is the mechanism whereby thin-filament mutations cause HCM.

5.
J Gen Physiol ; 155(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633586

RESUMO

Following binding to the thin filament, ß-cardiac myosin couples ATP-hydrolysis to conformational rearrangements in the myosin motor that drive myofilament sliding and cardiac ventricular contraction. However, key features of the cardiac-specific actin-myosin interaction remain uncertain, including the structural effect of ADP release from myosin, which is rate-limiting during force generation. In fact, ADP release slows under experimental load or in the intact heart due to the afterload, thereby adjusting cardiac muscle power output to meet physiological demands. To further elucidate the structural basis of this fundamental process, we used a combination of cryo-EM reconstruction methodologies to determine structures of the human cardiac actin-myosin-tropomyosin filament complex at better than 3.4 Å-resolution in the presence and in the absence of Mg2+·ADP. Focused refinements of the myosin motor head and its essential light chains in these reconstructions reveal that small changes in the nucleotide-binding site are coupled to significant rigid body movements of the myosin converter domain and a 16-degree lever arm swing. Our structures provide a mechanistic framework to understand the effect of ADP binding and release on human cardiac ß-myosin, and offer insights into the force-sensing mechanism displayed by the cardiac myosin motor.


Assuntos
Actinas , Tropomiosina , Humanos , Actinas/metabolismo , Tropomiosina/metabolismo , Miosinas Cardíacas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo
6.
J Gen Physiol ; 155(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459134

RESUMO

During force-generating steps of the muscle crossbridge cycle, the tip of the myosin motor, specifically loop-4, contacts the tropomyosin cable of actin filaments. In the current study, we determined the corresponding effect of myosin loop-4 on the regulatory positioning of tropomyosin on actin. To accomplish this, we compared high-resolution cryo-EM structures of myosin S1-decorated thin filaments containing either wild-type or a loop-4 mutant construct, where the seven-residue portion of myosin loop-4 that contacts tropomyosin was replaced by glycine residues, thus removing polar side chains from residues 366-372. Cryo-EM analysis of fully decorated actin-tropomyosin filaments with wild-type and mutant S1, yielded 3.4-3.6 Å resolution reconstructions, with even higher definition at the actin-myosin interface. Loop-4 densities both in wild-type and mutant S1 were clearly identified, and side chains were resolved in the wild-type structure. Aside from loop-4, actin and myosin structural domains were indistinguishable from each other when filaments were decorated with either mutant or wild-type S1. In marked contrast, the position of tropomyosin on actin in the two reconstructions differed by 3 to 4 Å. In maps of filaments containing the mutant, tropomyosin was located closer to the myosin-head and thus moved in the direction of the C-state conformation adopted by myosin-free thin filaments. Complementary interaction energy measurements showed that tropomyosin in the mutant thin filaments sits on actin in a local energy minimum, whereas tropomyosin is positioned by wild-type S1 in an energetically unfavorable location. We propose that the high potential energy associated with tropomyosin positioning in wild-type filaments favors an effective transition to B- and C-states following release of myosin from the thin filaments during relaxation.


Assuntos
Actinas , Tropomiosina , Miosinas , Citoesqueleto de Actina , Sarcômeros
7.
Front Physiol ; 13: 932333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812320

RESUMO

Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.

8.
Biology (Basel) ; 11(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35625390

RESUMO

Considerable controversy has surrounded the functional anatomy of the cytoskeleton of the contractile vascular smooth muscle cell. Recent studies have suggested a dynamic nature of the cortical cytoskeleton of these cells, but direct proof has been lacking. Here, we review past studies in this area suggesting a plasticity of smooth muscle cells. We also present images testing these suggestions by using the technique of immunoelectron microscopy of metal replicas to directly visualize the cortical actin cytoskeleton of the contractile smooth muscle cell along with interactions by representative cytoskeletal binding proteins. We find the cortical cytoskeletal matrix to be a branched, interconnected network of linear actin bundles. Here, the focal adhesion proteins talin and zyxin were localized with nanometer accuracy. Talin is reported in past studies to span the integrin-cytoplasm distance in fibroblasts and zyxin is known to be an adaptor protein between alpha-actinin and VASP. In response to activation of signal transduction with the alpha-agonist phenylephrine, we found that no movement of talin was detectable but that the zyxin-zyxin spacing was statistically significantly decreased in the smooth muscle cells examined. Contractile smooth muscle is often assumed to have a fixed cytoskeletal structure. Thus, the results included here are important in that they directly support the concept at the electron microscopic level that the focal adhesion of the contractile smooth muscle cell has a dynamic nature and that the protein-protein interfaces showing plasticity are protein-specific.

9.
Arch Biochem Biophys ; 725: 109282, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35577070

RESUMO

Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.


Assuntos
Tropomiosina , Troponina I , Actinas/metabolismo , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Tropomiosina/química , Troponina C/metabolismo , Troponina I/química
10.
Cell Rep Med ; 3(2): 100501, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243414

RESUMO

Analysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.


Assuntos
Comunicação Interatrial , Animais , Comunicação Interatrial/genética , Humanos , Camundongos , Proteínas dos Microfilamentos , Mutação/genética , Miofibrilas , Linhagem , Talina , Tropomiosina/genética
11.
Biology (Basel) ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943138

RESUMO

Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms.

12.
J Gen Physiol ; 153(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34319370

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.


Assuntos
Miosinas , Tropomiosina , Miosinas Cardíacas , Cardiomegalia/genética , Humanos , Mutação , Tropomiosina/genética
13.
Biochem Biophys Res Commun ; 551: 27-32, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33714756

RESUMO

Tropomyosin and troponin regulate muscle contraction by participating in a macromolecular scale steric-mechanism to control myosin-crossbridge - actin interactions and consequently contraction. At low-Ca2+, the C-terminal 30% of troponin subunit-I (TnI) is proposed to trap tropomyosin in a position on thin filaments that sterically interferes with myosin-binding, thus causing muscle relaxation. In contrast, at high-Ca2+, inhibition is released after the C-terminal domains dissociate from F-actin-tropomyosin as its component switch-peptide domain binds to the N-lobe of troponin-C (TnC). Recent, paradigm-shifting, cryo-EM reconstructions by the Namba group have revealed density attributed to TnI along cardiac muscle thin filaments at both low- and high-Ca2+ concentration. Modeling the reconstructions showed expected high-Ca2+ hydrophobic interactions of the TnI switch-peptide and TnC. However, under low-Ca2+ conditions, sparse interactions of TnI and tropomyosin, and in particular juxtaposition of non-polar switch-peptide residues and charged tropomyosin amino acids in the published model seem difficult to reconcile with an expected steric-blocking conformation. This anomaly is likely due to inaccurate fitting of tropomyosin into the cryo-EM volume. In the current study, the low-Ca2+ cryo-EM volume was fitted with a more accurate tropomyosin model and representation of cardiac TnI. Our results show that at low-Ca2+ a cluster of hydrophobic residues at the TnI switch-peptide and adjacent H4 helix (Ala149, Ala151, Met 154, Leu159, Gly160, Ala161, Ala163, Leu167, Leu169, Ala171, Leu173) draw-in tropomyosin surface residues (Ile143, Ile146, Ala151, Ile154), presumably attracting the entire tropomyosin cable to its myosin-blocking position on actin. The modeling confirms that neighboring TnI "inhibitory domain" residues (Arg145, Arg148) bind to thin filaments at actin residue Asp25, as previously suggested. ClusPro docking of TnI residues 137-184 to actin-tropomyosin, including the TnI inhibitory-domain, switch-peptide and Helix H4, verified the modeled configuration. Our residue-to-residue contact-mapping of the TnI-tropomyosin association lends itself to experimental validation and functional localization of disease-bearing mutations.


Assuntos
Músculo Esquelético/metabolismo , Tropomiosina/metabolismo , Troponina I/química , Troponina I/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica , Humanos , Simulação de Acoplamento Molecular , Relaxamento Muscular , Músculo Esquelético/química , Ligação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes , Tropomiosina/química , Troponina I/genética
14.
Hum Factors ; 63(6): 956-973, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-31934799

RESUMO

OBJECTIVE: We searched for the application of usability in the literature with a focus on adoption, measurements employed, and demonstrated value. Five human factors domains served as a platform for our reflection, which included the last 20 years. BACKGROUND: As usability studies continue to accumulate, there has been only a little past reflection on usability and contributions across a variety of applications. Our research provides a background for general usability, and we target specific usability research subareas within transportation, aging populations, autistic populations, telehealth, and cybersecurity. METHOD: "Usability" research was explored across five different domains within human factors. The goal was not to perform an exhaustive review but, rather, sample usability practices within several specific subareas. We focused on answering three questions: How was usability adopted? How was it measured? How was it framed in terms of value? CONCLUSION: We found that usability is very domain specific. Usability benchmarking studies and empirical standards are rare. The value associated with improving usability ranged widely-from monetary benefits to saving lives. Thus, researchers are motivated to further improve usability practices. A number of data collection and interpretation challenges still call for solutions. APPLICATION: Findings offer insight into the development of usability, as applied across a variety of subdomains. Our reflection ought to inform future theory development efforts. We are concerned about the lack of established benchmarks, which can help ground data interpretation. Future research should address this gap in the literature. We note that our findings can be used to develop better training materials for future usability researchers.


Assuntos
Telemedicina , Envelhecimento , Benchmarking , Humanos
15.
J Biol Chem ; 295(50): 17128-17137, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020181

RESUMO

Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin-tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin's reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T's N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin-tropomyosin binding and weaker tropomyosin-actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin-thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Cardiomiopatia Dilatada/genética , Mutação de Sentido Incorreto , Tropomiosina/química , Tropomiosina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Substituição de Aminoácidos , Cardiomiopatia Dilatada/metabolismo , Dicroísmo Circular , Humanos , Simulação de Dinâmica Molecular , Tropomiosina/metabolismo
16.
Biophys J ; 119(4): 821-830, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32730789

RESUMO

The motor protein myosin drives muscle and nonmuscle motility by binding to and moving along actin of thin filaments. Myosin binding to actin also modulates interactions of the regulatory protein, tropomyosin, on thin filaments, and conversely tropomyosin affects myosin binding to actin. Insight into this reciprocity will facilitate a molecular level elucidation of tropomyosin regulation of myosin interaction with actin in muscle contraction, and in turn, promote better understanding of nonmuscle cell motility. Indeed, experimental approaches such as fiber diffraction, cryoelectron microscopy, and three-dimensional reconstruction have long been used to define regulatory interaction of tropomyosin and myosin on actin at a structural level. However, their limited resolution has not proven sufficient to determine tropomyosin and myosin contacts at an atomic-level and thus to fully substantiate possible functional contributions. To overcome this deficiency, we have followed a hybrid approach by performing new cryogenic electron microscopy reconstruction of myosin-S1-decorated F-actin-tropomyosin together with atomic scale protein-protein docking of tropomyosin to the EM models. Here, cryo-EM data were derived from filaments reconstituted with α1-actin, cardiac αα-tropomyosin, and masseter muscle ß-myosin complexes; masseter myosin, which shares sequence identity with ß-cardiac myosin-heavy chain, was used because of its stability in vitro. The data were used to build an atomic model of the tropomyosin cable that fits onto the actin filament between the tip of the myosin head and a cleft on the innermost edge of actin subunits. The docking and atomic scale fitting showed multiple discrete interactions of myosin loop 4 and acidic residues on successive 39-42 residue-long tropomyosin pseudorepeats. The contacts between S1 and tropomyosin on actin appear to compete with and displace ones normally found between actin and tropomyosin on myosin-free thin filaments in relaxed muscle, thus restructuring the filament during myosin-induced activation.


Assuntos
Actinas , Tropomiosina , Citoesqueleto de Actina , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Miosinas
17.
Biophys J ; 119(1): 75-86, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32521240

RESUMO

Experimental approaches such as fiber diffraction and cryo-electron microscopy reconstruction have defined regulatory positions of tropomyosin on actin but have not, as yet, succeeded at determining key atomic-level contacts between these proteins or fully substantiated the dynamics of their interactions at a structural level. To overcome this deficiency, we have previously employed computational approaches to deduce global dynamics of thin filament components by energy landscape determination and molecular dynamics simulations. Still, these approaches remain computationally challenging for any complex and large macromolecular assembly like the thin filament. For example, tropomyosin cable wrapping around actin of thin filaments features both head-to-tail polymeric interactions and local twisting, both of which depart from strict superhelical symmetry. This produces a complex energy surface that is difficult to model and thus to evaluate globally. Therefore, at this stage of our understanding, assessing global molecular dynamics can prove to be inherently impractical. As an alternative, we adopted a "divide and conquer" protocol to investigate actin-tropomyosin interactions at an atomistic level. Here, we first employed unbiased protein-protein docking tools to identify binding specificity of individual tropomyosin pseudorepeat segments over the actin surface. Accordingly, tropomyosin "ligand" segments were rotated and translated over potential "target" binding sites on F-actin where the corresponding interaction energetics of billions of conformational poses were ranked by the programs PIPER and ClusPro. These data were used to assess favorable interactions and then to rebuild models of seamless and continuous tropomyosin cables over the F-actin substrate, which were optimized further by flexible fitting routines and molecular dynamics. The models generated azimuthally distinct regulatory positions for tropomyosin cables along thin filaments on actin dominated by stereo-specific head-to-tail overlap linkage. The outcomes are in good agreement with current cryo-electron microscopy topology and consistent with long-thought residue-to-residue interactions between actin and tropomyosin.


Assuntos
Citoesqueleto de Actina , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Tropomiosina/metabolismo
18.
Nat Commun ; 11(1): 2417, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415060

RESUMO

Striated muscle contraction is regulated by the translocation of troponin-tropomyosin strands over the thin filament surface. Relaxation relies partly on highly-favorable, conformation-dependent electrostatic contacts between actin and tropomyosin, which position tropomyosin such that it impedes actomyosin associations. Impaired relaxation and hypercontractile properties are hallmarks of various muscle disorders. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation lies near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here, we investigate M305L actin in vivo, in vitro, and in silico to resolve emergent pathological properties and disease mechanisms. Our data suggest the mutation reduces actin flexibility and distorts the actin-tropomyosin electrostatic energy landscape that, in muscle, result in aberrant contractile inhibition and excessive force. Thus, actin flexibility may be required to establish and maintain interfacial contacts with tropomyosin as well as facilitate its movement over distinct actin surface features and is, therefore, likely necessary for proper regulation of contraction.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/química , Doenças Musculares/patologia , Animais , Animais Geneticamente Modificados , Cardiomiopatia Hipertrófica , Biologia Computacional , Drosophila melanogaster/metabolismo , Feminino , Voo Animal , Humanos , Ligação de Hidrogênio , Masculino , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Contração Muscular , Mutação , Análise de Componente Principal , Multimerização Proteica , Eletricidade Estática , Transgenes , Tropomiosina/química
19.
Biophys J ; 118(2): 303-312, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31882250

RESUMO

Muscle contraction is governed by tropomyosin (Tpm) shifting azimuthally between three states on F-actin (B-, C-, and M-states) in response to calcium binding to troponin and actomyosin cross-bridge formation. The Tpm coiled coil polymerizes head to tail along the long-pitch helix of F-actin to form continuous superhelical cables that wrap around the actin filaments. The end-to-end bonds formed between the N- and C-terminus of adjacent Tpm molecules define Tpm continuity and play a critical role in the ability of Tpm to cooperatively bind to actin, thus facilitating Tpm conformational switching to cooperatively propagate along F-actin. We expect that a missense mutation in this critical overlap region associated with dilated cardiomyopathy, A277V, will alter Tpm binding and thin filament activation by altering the overlap structure. Here, we used cosedimentation assays and in vitro motility assays to determine how the mutation alters Tpm binding to actin and its ability to regulate actomyosin interactions. Analytical viscometry coupled with molecular dynamics simulations showed that the A277V mutation results in enhanced Tpm end-to-end bond strength and a reduced curvature of the Tpm overlap domain. The mutant Tpm exhibited enhanced actin-Tpm binding affinity, consistent with overlap stabilization. The observed A277V-induced decrease in cooperative activation observed with regulated thin filament motility indicates that increased overlap stabilization is not correlated with Tpm-Tpm overlap binding strength or mechanical rigidity as is often assumed. Instead, A277V-induced structural changes result in local and delocalized increases in Tpm flexibility and prominent coiled-coil twisting in pseudorepeat 4. An A277V-induced decrease in Ca2+ sensitivity, consistent with a mutation-induced bolstering of the B-state Tpm-actin electrostatic contacts and an increased Tpm troponin T1 binding affinity, was also observed.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Mutação , Tropomiosina/genética , Tropomiosina/metabolismo , Actinas/metabolismo , Animais , Cardiomiopatias/metabolismo , Galinhas , Simulação de Dinâmica Molecular , Conformação Proteica , Tropomiosina/química
20.
J Muscle Res Cell Motil ; 41(1): 23-38, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30771202

RESUMO

Tropomyosin, best known for its role in the steric regulation of muscle contraction, polymerizes head-to-tail to form cables localized along the length of both muscle and non-muscle actin-based thin filaments. In skeletal and cardiac muscles, tropomyosin, under the control of troponin and myosin, moves in a cooperative manner between blocked, closed and open positions on filaments, thereby masking and exposing actin-binding sites necessary for myosin crossbridge head interactions. While the coiled-coil signature of tropomyosin appears to be simple, closer inspection reveals surprising structural complexity required to perform its role in steric regulation. For example, component α-helices of coiled coils are typically zippered together along a continuous core hydrophobic stripe. Tropomyosin, however, contains a number of anomalous, functionally controversial, core amino acid residues. We argue that the atypical residues at this interface, including clusters of alanines and a charged aspartate, are required for preshaping tropomyosin to readily fit to the surface of the actin filament, but do so without compromising tropomyosin rigidity once the filament is assembled. Indeed, persistence length measurements of tropomyosin are characteristic of a semi-rigid cable, in this case conducive to cooperative movement on thin filaments. In addition, we also maintain that tropomyosin displays largely unrecognized and residue-specific torsional variance, which is involved in optimizing contacts between actin and tropomyosin on the assembled thin filament. Corresponding twist-induced stiffness may also enhance cooperative translocation of tropomyosin across actin filaments. We conclude that anomalous core residues of tropomyosin facilitate thin filament regulatory behavior in a multifaceted way.


Assuntos
Citoesqueleto de Actina/metabolismo , Tropomiosina/metabolismo , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA