Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Struct Dyn ; 10(6): 064501, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37941994

RESUMO

The evolution of charge carriers in photoexcited room temperature ZnO nanoparticles in solution is investigated using ultrafast ultraviolet photoluminescence spectroscopy, ultrafast Zn K-edge absorption spectroscopy, and ab initio molecular dynamics (MD) simulations. The photoluminescence is excited at 4.66 eV, well above the band edge, and shows that electron cooling in the conduction band and exciton formation occur in <500 fs, in excellent agreement with theoretical predictions. The x-ray absorption measurements, obtained upon excitation close to the band edge at 3.49 eV, are sensitive to the migration and trapping of holes. They reveal that the 2 ps transient largely reproduces the previously reported transient obtained at 100 ps time delay in synchrotron studies. In addition, the x-ray absorption signal is found to rise in ∼1.4 ps, which we attribute to the diffusion of holes through the lattice prior to their trapping at singly charged oxygen vacancies. Indeed, the MD simulations show that impulsive trapping of holes induces an ultrafast expansion of the cage of Zn atoms in <200 fs, followed by an oscillatory response at a frequency of ∼100 cm-1, which corresponds to a phonon mode of the system involving the Zn sub-lattice.

2.
J Chem Phys ; 158(13): 134304, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031139

RESUMO

Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion's charge state until the final state is reached. In molecules, the charge is spread across the atomic sites, resulting in dissociation to energetic atomic ions. We have used x-ray/ion coincidence spectroscopy to measure charge states and energies of Iq+ and Brq'+ atomic ions following 1s ionization at the I and Br K-edges of IBr. We present the charge states and kinetic energies of the two correlated fragment ions associated with core-excited states produced during the various steps of the cascades. To understand the dynamics leading to the ion data, we develop a computational model that combines Monte-Carlo/Molecular-Dynamics (MC/MD) simulations with a classical over-the-barrier model to track inner-shell cascades and redistribution of electrons in valence orbitals and nuclear motion of fragments.

3.
J Am Chem Soc ; 138(33): 10586-96, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27452370

RESUMO

X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.

4.
Nat Commun ; 6: 7511, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26104140

RESUMO

Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

5.
J Chem Phys ; 142(22): 224302, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071705

RESUMO

Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

6.
J Chem Phys ; 139(23): 234307, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359367

RESUMO

Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations. Qualitative agreement is observed between the experimental results and the theoretical calculations of the Legendre moments representing the angular distribution for the two enantiomers. The electron-ion coincidence technique using multiphoton ionization opens new directions in table-top analytical mass-spectrometric applications of mixtures of chiral molecules.


Assuntos
Cânfora/química , Cânfora/classificação , Dicroísmo Circular , Elétrons , Fótons , Estereoisomerismo
7.
Rev Sci Instrum ; 83(9): 093103, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020358

RESUMO

Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

8.
Chemphyschem ; 12(8): 1459-73, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21506237

RESUMO

Herein, we review the current capabilities and potential of advanced single-particle imaging techniques to study photodynamics in isolated molecules. These reaction microscopes are able to measure the full three-dimensional energy and angular distribution of (correlated) particles such as electrons and molecular fragments ejected after photoexcitation of molecules. In particular, we discuss the performance and capabilities of a novel photoelectron-photoion coincidence imaging spectrometer constructed at LaserLaB Amsterdam. This microscope was developed for the study of nonadiabatic effects in ultrafast time-resolved experiments. It is specifically targeted at optimal control studies of photodynamics to foster and advance our understanding of mechanisms in optimal control with shaped ultrafast laser pulses. We review a few recent experimental results illustrating the wealth of detailed information that can be obtained in such imaging experiments about the interplay between (shaped) laser fields, molecular dynamics, ionization processes and competing multichannel pathways. Furthermore, the recently developed photoelectron-circular-dichroism imaging technique to detect enantiomers and to study chirality effects will be discussed, as a further illustration of the potential of modern reaction microscopes in stereochemistry.

9.
Faraday Discuss ; 153: 173-87; discussion 189-212, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22452081

RESUMO

The control of multichannel ionic fragmentation dynamics in CF3I is studied by femtosecond pulse shaping and velocity map photoelectron photoion coincidence imaging. When CF3I is photoexcited with femtosecond laser pulses around 540 nm there are two major ions observed in the time-of-flight mass spectrum, the parent CF3I+ ion and the CF3+ fragment ion. In this first study we focussed on the influence of LCD-shaped laser pulses on the molecular dynamics. The three-dimensional recoil distribution of electrons and ions were imaged in coincidence using a single time-of-flight delay line detector. By fast switching of the voltages on the various velocity map ion lenses after detection of the electron, both the electron and the coincident ion are measured with the same imaging detector. These results demonstrate that a significant simplification of a photoelectron-photoion coincidence imaging apparatus is in principle possible using switched lens voltages. It is observed that shaped laser fields like chirped pulses, double pulses, and multiple pulses can enhance the CF3+CF3I+ ratio by up to 100%. The total energetics of the dynamics is revealed by analysis of the coincident photoelectron spectra and the kinetic energy of the CF3+ and I fragments. Both the parent CF3I+ and the CF3+ fragment result from a five-photon excitation process. The fragments are formed with very low kinetic energy. The photoelectron spectra and CF3+/CF3I+ ratio vary with the center wavelength of the shaped laser pulses. An optimal enhancement of the CF3+/CF3I+ ratio by about 60% is observed for the double pulse excitation when the pulses are spaced 60 fs apart. We propose that the control mechanism is determined by dynamics on neutral excited states and we discuss the results in relation to the location of electronically excited (Rydberg) states of CF3I.


Assuntos
Elétrons , Hidrocarbonetos Halogenados/química , Simulação de Dinâmica Molecular , Fótons , Fotoquímica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA