Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173046, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735326

RESUMO

Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO). Therefore, aerobic methane oxidation depends on sufficient Cu acquisition by methanotrophs. Because they require both oxygen and methane, aerobic methanotrophs reside at oxic-anoxic interfaces, often close to sulphidic zones where Cu bioavailability can be limited by poorly soluble Cu sulphide mineral phases. Under Cu-limiting conditions, certain aerobic methanotrophs exude Cu-binding ligands termed chalkophores, such as methanobactin (mb) exuded by Methylosinus trichosporium OB3b. Our main objective was to establish whether chalkophores can mobilise Cu from Cu sulphide-bearing marine sediments to enhance Cu bioavailability. Through a series of kinetic batch experiments, we investigated Cu mobilisation by mb from a set of well-characterized sulphidic marine sediments differing in sediment properties, including Cu content and phase distribution. Characterization of solid-phase Cu speciation included X-ray absorption spectroscopy and a targeted sequential extraction. Furthermore, in batch experiments, we investigated to what extent adsorption of metal-free mb and Cu-mb complexes to marine sediments constrains Cu mobilisation. Our results are the first to show that both solid phase Cu speciation and chalkophore adsorption can constrain methanotrophic Cu acquisition from marine sediments. Only for certain sediments did mb addition enhance dissolved Cu concentrations. Cu mobilisation by mb was not correlated to the total Cu content of the sediment, but was controlled by solid-phase Cu speciation. Cu was only mobilised from sediments containing a mono-Cu-sulphide (CuSx) phase. We also show that mb adsorption to sediments limits Cu acquisition by mb to less compact (surface) sediments. Therefore, in sulphidic sediments, mb-mediated Cu acquisition is presumably constrained to surface-sediment interfaces containing mono-Cu-sulphide phases.


Assuntos
Cobre , Sedimentos Geológicos , Imidazóis , Methylosinus trichosporium , Oligopeptídeos , Cobre/metabolismo , Sedimentos Geológicos/química , Oligopeptídeos/metabolismo , Imidazóis/metabolismo , Imidazóis/química , Methylosinus trichosporium/metabolismo , Oxirredução , Metano/metabolismo , Oxigenases/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise
2.
Appl Microbiol Biotechnol ; 108(1): 295, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598118

RESUMO

A "redox-stat" RMnR bioreactor was employed to simulate moderately reducing conditions (+ 420 mV) in Sb-contaminated shooting range soils for approximately 3 months, thermodynamically favoring Mn(IV) reduction. The impact of moderately reducing conditions on elemental mobilization (Mn, Sb, Fe) and speciation [Sb(III) versus Sb(V); Fe2+/Fe3+] was compared to a control bioreactor RCTRL without a fixed redox potential. In both bioreactors, reducing conditions were accompanied by an increase in effluent Sb(V) and Mn(II) concentrations, suggesting that Sb(V) was released through microbial reduction of Mn oxyhydroxide minerals. This was underlined by multiple linear regression analysis showing a significant (p < 0.05) relationship between Mn and Sb effluent concentrations. Mn concentration was the sole variable exhibiting a statistically significant effect on Sb in RMnR, while under the more reducing conditions in RCTRL, pH and redox potential were also significant. Analysis of the bacterial community composition revealed an increase in the genera Azoarcus, Flavisolibacter, Luteimonas, and Mesorhizobium concerning the initial soil, some of which are possible key players in the process of Sb mobilization. The overall amount of Sb released in the RMnR (10.40%) was virtually the same as in the RCTRL (10.37%), which underlines a subordinate role of anoxic processes, such as Fe-reductive dissolution, in Sb mobilization. This research underscores the central role of relatively low concentrations of Mn oxyhydroxides in influencing the fate of trace elements. Our study also demonstrates that bioreactors operated as redox-stats represent versatile tools that allow quantifying the contribution of specific mechanisms determining the fate of trace elements in contaminated soils. KEY POINTS: • "Redox-stat" reactors elucidate Sb mobilization mechanisms • Mn oxyhydroxides microbial reductive dissolution has a major role in Sb mobilization in soils under moderately reducing conditions • Despite aging the soil exhibited significant Sb mobilization potential, emphasizing persistent environmental effects.


Assuntos
Manganês , Oligoelementos , Bacteroidetes , Solo
3.
Glob Chang Biol ; 30(1): e17076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273585

RESUMO

Warming and eutrophication influence carbon (C) processing in sediments, with implications for the global greenhouse-gas budget. Temperature effects on sedimentary C loss are well understood, but the mechanism of change in turnover through priming with labile organic matter (OM) is not. Evaluating changes in the magnitude of priming as a function of warming, eutrophication, and OM stoichiometry, we incubated sediments with 13 C-labeled fresh organic matter (FOM, algal/cyanobacterial) and simulated future climate scenarios (+4°C and +8°C). We investigated FOM-induced production of CH4 and microbial community changes. C loss was primed by up to 17% in dominantly allochthonous sediments (ranging from 5% to 17%), compared to up to 6% in autochthonous sediments (-9% to 6%), suggesting that refractory OM is more susceptible to priming. The magnitude of priming was dependent on sediment OM stoichiometry (C/N ratio), the ratio of fresh labile OM to microbial biomass (FOM/MB), and temperature. Priming was strongest at 4°C when FOM/MB was below 50%. Addition of FOM was associated with activation and growth of bacterial decomposers, including for example, Firmicutes, Bacteroidetes, or Fibrobacteres, known for their potential to degrade insoluble and complex structural biopolymers. Using sedimentary C/N > 15 as a threshold, we show that in up to 35% of global lakes, sedimentation is dominated by allochthonous rather than autochthonous material. We then provide first-order estimates showing that, upon increase in phytoplankton biomass in these lakes, priming-enabled degradation of recalcitrant OM will release up to 2.1 Tg C annually, which would otherwise be buried for geological times.


Assuntos
Cianobactérias , Lagos , Lagos/química , Biomassa , Carbono/química , Fitoplâncton , Sedimentos Geológicos/química , Eutrofização , China
4.
Nat Commun ; 15(1): 922, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297000

RESUMO

Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Microesferas , Comunicação Celular , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Rapid Commun Mass Spectrom ; 38(1): e9652, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38073201

RESUMO

RATIONALE: Stable isotope analysis of O2 is a valuable tool to identify O2 -consuming processes in the environment; however, reference materials for O2 isotope analysis are lacking. Consequently, a one-point calibration with O2 from ambient air is often applied, which can lead to substantial measurement uncertainties. Our goals were to develop a simple multipoint isotope-ratio calibration approach and to determine measurement errors of δ18 O and δ17 O values of O2 associated with a one-point calibration. METHODS: We produced O2 photosynthetically with extracted spinach thylakoids from source waters with δ18 O values of -56‰ to +95‰ and δ17 O values of -30‰ to +46‰. Photosynthesis was chosen because this process does not cause isotopic fractionation, so that the O isotopic composition of the produced O2 will be identical to that of the source water. The δ18 O and δ17 O values of the produced O2 were measured by gas chromatography coupled with isotope-ratio mass spectrometry (GC/IRMS), applying a common one-point calibration. RESULTS: Linear regressions between δ18 O or δ17 O values of the produced O2 and those of the corresponding source waters resulted in slopes of 0.99 ± 0.01 and 0.92 ± 0.10, respectively. In the tested δ range, a one-point calibration thus introduced maximum errors of 0.8‰ and 3.3‰ for δ18 O and δ17 O, respectively. Triple oxygen isotopic measurements of O2 during consumption by Fe2+ resulted in a δ18 O-δ17 O relationship (λ) of 0.49 ± 0.01 without δ scale correction, slightly lower than expected for mass-dependent O isotopic fractionation. CONCLUSIONS: No significant bias is introduced on the δ18 O scale when applying a one-point calibration with O2 from ambient air during O2 isotope analysis. Both O2 formation and consumption experiments, however, indicate a δ17 O scale compression. Consequently, δ17 O values cannot be measured accurately by GC/IRMS with a one-point calibration without determining the δ17 O scale correction factor, e.g. with the O2 formation experiments described here.

6.
Nat Commun ; 14(1): 6591, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852975

RESUMO

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika - a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.


Assuntos
Lagos , Fixação de Nitrogênio , Hidrodinâmica , Tanzânia , Nitrogênio
7.
Harmful Algae ; 125: 102432, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220985

RESUMO

Remote sensing using satellite imagery has been promoted as a method to broaden the scale and frequency of cyanobacterial monitoring. This relies on the ability to establish relationships between the reflectance spectra of water bodies and the abundance of cyanobacteria. A challenge to achieving this comes from a limited understanding of the extent to which the optical properties of cyanobacteria vary according to their physiological state and growth environment. The aim of the present study was to determine how growth stage, nutrient status and irradiance affect pigment concentrations and absorption spectra in two common bloom forming cyanobacterial taxa: Dolichospermum lemmermannii and Microcystis aeruginosa. Each species was grown in laboratory batch culture under a full factorial design of low or high light intensity and low, medium, or high nitrate concentrations. Absorption spectra, pigment concentrations and cell density were measured throughout the growth phases. The absorption spectra were all highly distinguishable from each other, with greater interspecific than intraspecific differences, indicating that both D. lemmermannii and M. aeruginosa can be readily differentiated using hyperspectral absorption spectra. Despite this, each species exhibited different responses in the per-cell pigment concentrations with varying light intensity and nitrate exposure. Variability among treatments was considerably higher in D. lemmermannii than in M. aeruginosa, which exhibited smaller changes in pigment concentrations among the treatments. These results highlight the need to understand the physiology of the cyanobacteria and to take caution when estimating biovolumes from reflectance spectra when species composition and growth stage are unknown.


Assuntos
Cianobactérias , Microcystis , Nitratos , Nutrientes , Técnicas de Cultura Celular por Lotes
9.
ISME J ; 17(5): 693-702, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806832

RESUMO

We investigated microbial methane oxidation in the water column of two connected but hydrodynamically contrasting basins of Lake Lugano, Switzerland. Both basins accumulate large amounts of methane in the water column below their chemoclines, but methane oxidation efficiently prevents methane from reaching surface waters. Here we show that in the meromictic North Basin water column, a substantial fraction of methane was eliminated through anaerobic methane oxidation (AOM) coupled to nitrite reduction by Candidatus Methylomirabilis. Incubations with 14CH4 and concentrated biomass from this basin showed enhanced AOM rates with nitrate (+62%) and nitrite (+43%). In the more dynamic South Basin, however, aerobic methanotrophs prevailed, Ca. Methylomirabilis was absent in the anoxic water column, and no evidence was found for nitrite-dependent AOM. Here, the duration of seasonal stratification and anoxia seems to be too short, relative to the slow growth rate of Ca. Methylomirabilis, to allow for the establishment of anaerobic methanotrophs, in spite of favorable hydrochemical conditions. Using 16 S rRNA gene sequence data covering nearly ten years of community dynamics, we show that Ca. Methylomirabilis was a permanent element of the pelagic methane filter in the North Basin, which proliferated during periods of stable water column conditions and became the dominant methanotroph in the system. Conversely, more dynamic water column conditions led to a decline of Ca. Methylomirabilis and induced blooms of the faster-growing aerobic methanotrophs Methylobacter and Crenothrix. Our data highlight that physical (mixing) processes and ecosystem stability are key drivers controlling the community composition of aerobic and anaerobic methanotrophs.


Assuntos
Ecossistema , Nitritos , Anaerobiose , Metano , Lagos , Bactérias/genética , Oxirredução
10.
Sci Data ; 10(1): 100, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797273

RESUMO

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

11.
J Dent ; 127: 104314, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184006

RESUMO

OBJECTIVES: Numerous studies investigating the survival time of post and cores have found that loss of retention is the most common cause of failure Nevertheless, investigations focusing on decementation, survival after recementation, and the influencing parameters in a large number of patients with long follow-up periods are lacking. Therefore, the aim of this short communication article is the survival analysis of post and cores after recementation and repeated loss of retention. MATERIALS AND METHODS: During the observation period (2004-2020), 653 patients received 953 post and cores. From these, 112 post and cores which suffered loss of retention were selected. The patient files were analysed for the following parameters: Type of covering prosthetic restoration, location, type of tooth, luting material, post and core material, bone attachment and therapist. The survival time until loss of retention or repeated decementations after recementation was documented. Survival probability was assessed using Kaplan-Meier and Cox regression analyses. RESULTS: The average time until decementation was 13.33 years. The cumulative decementation rate was 11.8%, while in 42.0% of the cases, post and cores showed multiple losses of retention. A significant influence (Kaplan-Meier analysis) was recorded for the type of covering prosthetic restoration, type of tooth, luting material, post and core material and bone attachment. The multifactorial survival analysis (Cox regression) showed a significant influence of patient's age and the type of covering prosthetic restoration. CONCLUSIONS: Once decementation occurs, recementation neither guarantees definitive fit nor necessarily predetermines repeated decementations. CLINICAL SIGNIFICANCE: Post and cores should be avoided under primary crown-retained removable partial dentures (RPD). If this treatment is inevitable, a continuous follow-up is necessary to check the denture for proper fit to the tissues to prevent overloading on the post and core.


Assuntos
Falha de Restauração Dentária , Prótese Parcial Removível , Humanos , Estudos Retrospectivos , Dente Suporte , Seguimentos , Coroas
12.
Front Microbiol ; 13: 927475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118224

RESUMO

Natural-abundance measurements of nitrate and nitrite (NOx) isotope ratios (δ15N and δ18O) can be a valuable tool to study the biogeochemical fate of NOx species in the environment. A prerequisite for using NOx isotopes in this regard is an understanding of the mechanistic details of isotope fractionation (15ε, 18ε) associated with the biotic and abiotic NOx transformation processes involved (e.g., denitrification). However, possible impacts on isotope fractionation resulting from changing growth conditions during denitrification, different carbon substrates, or simply the presence of compounds that may be involved in NOx reduction as co-substrates [e.g., Fe(II)] remain uncertain. Here we investigated whether the type of organic substrate, i.e., short-chained organic acids, and the presence/absence of Fe(II) (mixotrophic vs. heterotrophic growth conditions) affect N and O isotope fractionation dynamics during nitrate (NO3 -) and nitrite (NO2 -) reduction in laboratory experiments with three strains of putative nitrate-dependent Fe(II)-oxidizing bacteria and one canonical denitrifier. Our results revealed that 15ε and 18ε values obtained for heterotrophic (15ε-NO3 -: 17.6 ± 2.8‰, 18ε-NO3 -:18.1 ± 2.5‰; 15ε-NO2 -: 14.4 ± 3.2‰) vs. mixotrophic (15ε-NO3 -: 20.2 ± 1.4‰, 18ε-NO3 -: 19.5 ± 1.5‰; 15ε-NO2 -: 16.1 ± 1.4‰) growth conditions are very similar and fall within the range previously reported for classical heterotrophic denitrification. Moreover, availability of different short-chain organic acids (succinate vs. acetate), while slightly affecting the NOx reduction dynamics, did not produce distinct differences in N and O isotope effects. N isotope fractionation in abiotic controls, although exhibiting fluctuating results, even expressed transient inverse isotope dynamics (15ε-NO2 -: -12.4 ± 1.3 ‰). These findings imply that neither the mechanisms ordaining cellular uptake of short-chain organic acids nor the presence of Fe(II) seem to systematically impact the overall N and O isotope effect during NOx reduction. The similar isotope effects detected during mixotrophic and heterotrophic NOx reduction, as well as the results obtained from the abiotic controls, may not only imply that the enzymatic control of NOx reduction in putative NDFeOx bacteria is decoupled from Fe(II) oxidation, but also that Fe(II) oxidation is indirectly driven by biologically (i.e., via organic compounds) or abiotically (catalysis via reactive surfaces) mediated processes co-occurring during heterotrophic denitrification.

13.
Phys Rev E ; 106(1-2): 015308, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974647

RESUMO

Fluid dynamics simulations with the lattice Boltzmann method (LBM) are very memory intensive. Alongside reduction in memory footprint, significant performance benefits can be achieved by using FP32 (single) precision compared to FP64 (double) precision, especially on GPUs. Here we evaluate the possibility to use even FP16 and posit16 (half) precision for storing fluid populations, while still carrying arithmetic operations in FP32. For this, we first show that the commonly occurring number range in the LBM is a lot smaller than the FP16 number range. Based on this observation, we develop customized 16-bit formats-based on a modified IEEE-754 and on a modified posit standard-that are specifically tailored to the needs of the LBM. We then carry out an in-depth characterization of LBM accuracy for six different test systems with increasing complexity: Poiseuille flow, Taylor-Green vortices, Karman vortex streets, lid-driven cavity, a microcapsule in shear flow (utilizing the immersed-boundary method), and, finally, the impact of a raindrop (based on a volume-of-fluid approach). We find that the difference in accuracy between FP64 and FP32 is negligible in almost all cases, and that for a large number of cases even 16-bit is sufficient. Finally, we provide a detailed performance analysis of all precision levels on a large number of hardware microarchitectures and show that significant speedup is achieved with mixed FP32/16-bit.

14.
Geobiology ; 20(5): 690-706, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716154

RESUMO

Aerobic methane oxidation (MOx) depends critically on the availability of copper (Cu) as a crucial component of the metal centre of particulate methane monooxygenase, one of the main enzymes involved in MOx. Some methanotrophs have developed Cu acquisition strategies, in which they exude Cu-binding ligands termed chalkophores under conditions of low Cu availability. A well-characterised chalkophore is methanobactin (mb), exuded by the microaerophilic methanotroph Methylosinus trichosporium OB3b. Aerobic methanotrophs generally reside close to environmental oxic-anoxic interfaces, where the formation of Cu sulphide phases can aggravate the limitation of bioavailable Cu due to their low solubility. The reactivity of chalkophores towards such Cu sulphide mineral phases has not yet been investigated. In this study, a combination of dissolution experiments and equilibrium modelling was used to examine the dissolution and solubility of bulk and nanoparticulate Cu sulphide minerals in the presence of mb as influenced by pH, oxygen and natural organic matter. In general, we show that mb is effective at increasing the dissolved Cu concentrations in the presence of a variety of Cu sulphide phases that may potentially limit Cu bioavailability. More Cu was mobilised per mole of mb from Cu sulphide nanoparticles compared with well-crystalline bulk covellite (CuS). In general, the efficacy of mb at mobilising Cu from Cu sulphides is pH-dependent. At lower pH, e.g. pH 5, mb was ineffective at solubilizing Cu. The presence of mb increased dissolved Cu concentrations between pH 7 and 8.5, where the solubility of all Cu sulphides is generally low, both in the presence and absence of oxygen. These results suggest that chalkophore-promoted Cu mobilisation from sulphide phases is an effective extracellular mechanism for increasing dissolved Cu concentrations at oxic-anoxic interfaces, particularly in the neutral to slightly alkaline pH range. This suggests that aerobic methanotrophs may be able to fulfil their Cu requirements via the exudation of mb in natural environments where the bioavailability of Cu is constrained by very stable Cu sulphide phases.


Assuntos
Cobre , Methylosinus trichosporium , Cobre/química , Concentração de Íons de Hidrogênio , Imidazóis , Methylosinus trichosporium/química , Minerais , Oligopeptídeos , Oxigênio , Sulfetos
15.
Front Microbiol ; 13: 864630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615497

RESUMO

Freshwater lakes represent an important source of the potent greenhouse gas methane (CH4) to the atmosphere. Methane emissions are regulated to large parts by aerobic (MOx) and anaerobic (AOM) oxidation of methane, which are important CH4 sinks in lakes. In contrast to marine benthic environments, our knowledge about the modes of AOM and the related methanotrophic microorganisms in anoxic lake sediments is still rudimentary. Here, we demonstrate the occurrence of AOM in the anoxic sediments of Lake Sempach (Switzerland), with maximum in situ AOM rates observed within the surface sediment layers in presence of multiple groups of methanotrophic bacteria and various oxidants known to support AOM. However, substrate-amended incubations (with NO2 -, NO3 -, SO4 2-, Fe-, and Mn-oxides) revealed that none of the electron acceptors previously reported to support AOM enhanced methane turnover in Lake Sempach sediments under anoxic conditions. In contrast, the addition of oxygen to the anoxic sediments resulted in an approximately 10-fold increase in methane oxidation relative to the anoxic incubations. Phylogenetic and isotopic evidence indicate that both Type I and Type II aerobic methanotrophs were growing on methane under both oxic and anoxic conditions, although methane assimilation rates were an order of magnitude higher under oxic conditions. While the anaerobic electron acceptor responsible for AOM could not be identified, these findings expand our understanding of the metabolic versatility of canonically aerobic methanotrophs under anoxic conditions, with important implications for future investigations to identify methane oxidation processes. Bacterial AOM by facultative aerobic methane oxidizers might be of much larger environmental significance in reducing methane emissions than previously thought.

16.
Water Res X ; 15: 100130, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287381

RESUMO

Nitrous oxide (N2O) dominates greenhouse gas emissions in wastewater treatment plants (WWTPs). Formation of N2O occurs during biological nitrogen removal, involves multiple microbial pathways, and is typically very dynamic. Consequently, N2O mitigation strategies require an improved understanding of nitrogen transformation pathways and their modulating controls. Analyses of the nitrogen (N) and oxygen (O) isotopic composition of N2O and its substrates at natural abundance have been shown to provide valuable information on formation and reduction pathways in laboratory settings, but have rarely been applied to full-scale WWTPs. Here we show that N-species isotope ratio measurements at natural abundance level, combined with long-term N2O monitoring, allow identification of the N2O production pathways in a full-scale plug-flow WWTP (Hofen, Switzerland). Heterotrophic denitrification appears as the main N2O production pathway under all tested process conditions (0-2 mgO2/l, high and low loading conditions), while nitrifier denitrification was less important, and more variable. N2O production by hydroxylamine oxidation was not observed. Fractional N2O elimination by reduction to dinitrogen (N2) during anoxic conditions was clearly indicated by a concomitant increase in site preference, δ18O(N2O) and δ15N(N2O). N2O reduction increased with decreasing availability of dissolved inorganic N and organic substrates, which represents the link between diurnal N2O emission dynamics and organic substrate fluctuations. Consequently, dosing ammonium-rich reject water under low-organic-substrate conditions is unfavorable, as it is very likely to cause high net N2O emissions. Our results demonstrate that monitoring of the N2O isotopic composition holds a high potential to disentangle N2O formation mechanisms in engineered systems, such as full-scale WWTP. Our study serves as a starting point for advanced campaigns in the future combining isotopic technologies in WWTP with complementary approaches, such as mathematical modeling of N2O formation or microbial assays to develop efficient N2O mitigation strategies.

17.
Data Brief ; 40: 107759, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005148

RESUMO

Horizontal patchiness of water quality attributes in lakes substantially influences the ability to accurately determine an average condition of a lake from traditional in situ sampling. Monitoring programmes for lake water quality often rely on water samples from one or few locations but the assumption of representativeness is seldomly tested. Satellite observations can support environmental monitoring by detecting horizontal variability of water quality attributes over entire lakes. This article is a co-submission with Lehmann et al. (2021), who present a method to create a regional calibration of a satellite chlorophyll a algorithm and a spatial analysis of an image time series to detect recurring patchiness. Our method was developed on 13 lakes in the central North Island of New Zealand and this publication makes available the data used in our analysis and the spatial fields of results. These data are immediately valuable for practitioners operating within the region of interest providing a five year archive of synoptic water quality data and spatial fields to help optimize in situ monitoring efforts. In addition, there is value to the wider scientific community as the study lakes are a useful 'natural lab' for the development of aquatic remote sensing methods due to the range of trophic conditions and water colour in a single satellite image scene. Together with decades of in situ water quality records, our data is therefore useful for the development and validation of widely applicable methods of water quality retrieval from satellite data.

18.
J Dent ; 117: 103923, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953973

RESUMO

OBJECTIVES: The retrospective survival study (1995-2004) by Balkenhol et al. [1]. led to changes in the decision-making process for treatment with post and cores (special focus on the covering prosthetic restoration while deciding for treatment with post and cores, high primary friction at the try-in stage for conventional cementation, only indirect fabrication technique, no semi-precious alloy) in our clinic. The aim of this study was to examine the influence of these changes on the survival probability. MATERIALS AND METHODS: In the observation period (2004-2020) 653 patients received in total 953 post and cores. The patient files were analysed due to the parameters: Type of covering prosthetic restoration, location, type of tooth, luting material, post and core material, bone attachment, therapist and cause of failure. According to the previous study the survival probability was assessed using Kaplan-Meyer analysis. Cox regression was used to assess the risk of failure and identify possible covariates. RESULTS: The average survival time of the post and cores was 10.9 years. The cumulative failure rate was 28.2%. A significant influence on the survival time (Kaplan-Meyer analysis) could be found for the parameters: Type of covering prosthetic restoration, location, type of tooth, post and core material and bone attachment. The multifactorial survival analysis (Cox regression) showed a significant influence of the age of the patient at the time of fitting the post, the type of covering prosthetic restoration and the bone attachment. CONCLUSIONS: The changes in the decision-making process did not lead to a better survival probability. CLINICAL SIGNIFICANCE: The conclusions stated in the previous study were not strict enough. Treatments with post and cores should be critically scrutinized on the basis of covering prosthetic restoration and bone attachment. Post and cores under primary crown retained RPDs should be avoided because of the bad survival probability.


Assuntos
Técnica para Retentor Intrarradicular , Cimentação , Coroas , Falha de Restauração Dentária , Seguimentos , Humanos , Estudos Retrospectivos
19.
Water Res ; 200: 117225, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052477

RESUMO

Mainstream anaerobic ammonium oxidation (anammox) represents one of the most promising energy-efficient mechanisms of fixed nitrogen elimination from wastewaters. However, little is known about the exact processes and drivers of microbial community assembly within the complex microbial biofilms that support anammox in engineered ecosystems. Here, we followed anammox biofilm development on fresh carriers in an established 8m3 mainstream anammox reactor that is exposed to seasonal temperature changes (~25-12°C) and varying NH4+ concentrations (5-25 mg/L). We use fluorescence in situ hybridization and 16S rRNA gene sequencing to show that three distinct stages of biofilm development emerge naturally from microbial community composition and biofilm structure. Neutral modelling and network analysis are employed to elucidate the relative importance of stochastic versus deterministic processes and synergistic and antagonistic interactions in the biofilms during their development. We find that the different phases are characterized by a dynamic succession and an interplay of both stochastic and deterministic processes. The observed growth stages (Colonization, Succession and Maturation) appear to be the prerequisite for the anticipated growth of anammox bacteria and for reaching a biofilm community structure that supports the desired metabolic and functional capacities observed for biofilm carriers already present in the system (~100gNH4-N m3 d-1). We discuss the relevance of this improved understanding of anammox-community ecology and biofilm development in the context of its practical application in the start-up, configuration, and optimization of anammox biofilm reactors.


Assuntos
Reatores Biológicos , Ecossistema , Anaerobiose , Biofilmes , Hibridização in Situ Fluorescente , Nitrogênio , Oxirredução , RNA Ribossômico 16S/genética , Processos Estocásticos
20.
Sci Rep ; 11(1): 7850, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846510

RESUMO

Anaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, - 16 to - 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19-32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA