Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Boundary Layer Meteorol ; 190(5): 24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706472

RESUMO

In absence of the high-frequency measurements of wind components, sonic temperature and water vapour required by the eddy covariance (EC) method, Monin-Obukhov similarity theory (MOST) is often used to calculate heat fluxes. However, MOST requires assumptions of stability corrections and roughness lengths. In most environments and weather situations, roughness length and stability corrections have high uncertainty. Here, we revisit the modified Bowen-ratio method, which we call C-method, to calculate the latent heat flux over snow. In the absence of high-frequency water vapour measurements, we use sonic anemometer data, which have become much more standard. This method uses the exchange coefficient for sensible heat flux to estimate latent-heat flux. Theory predicts the two exchange coefficients to be equal and the method avoids assuming roughness lengths and stability corrections. We apply this method to two datasets from high mountain (Alps) and polar (Antarctica) environments and compare it with MOST and the three-layer model (3LM). We show that roughness length has a great impact on heat fluxes calculated using MOST and that different calculation methods over snow lead to very different results. Instead, the 3LM leads to good results, in part due to the fact that it avoids roughness length assumptions to calculate heat fluxes. The C-method presented performs overall better or comparable to established MOST with different stability corrections and provides results comparable to the direct EC method. An application of this method is provided for a new station installed in the Pamir mountains. Supplementary Information: The online version contains supplementary material available at 10.1007/s10546-024-00864-y.

2.
Sci Total Environ ; 912: 168473, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007123

RESUMO

The seasonal movement of the zero-degree isotherm across the Southern Ocean and Antarctic Peninsula drives major changes in the physical and biological processes around maritime Antarctica. These include spatial and temporal shifts in precipitation phase, snow accumulation and melt, thawing and freezing of the active layer of the permafrost, glacier mass balance variations, sea ice mass balance and changes in physiological processes of biodiversity. Here, we characterize the historical seasonal southward movement of the monthly near-surface zero-degree isotherm latitude (ZIL), and quantify the velocity of migration in the context of climate change using climate reanalyses and projections. From 1957 to 2020, the ZIL exhibited a significant southward shift of 16.8 km decade-1 around Antarctica and of 23.8 km decade-1 in the Antarctic Peninsula, substantially faster than the global mean velocity of temperature change of 4.2 km decade-1, with only a small fraction being attributed to the Southern Annular Mode (SAM). CMIP6 models reproduce the trends observed from 1957 to 2014 and predict a further southward migration around Antarctica of 24 ± 12 km decade-1 and 50 ± 19 km decade-1 under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The southward migration of the ZIL is expected to have major impacts on the cryosphere, especially on the precipitation phase, snow accumulation and in peripheral glaciers of the Antarctic Peninsula, with more uncertain changes on permafrost, ice sheets and shelves, and sea ice. Longer periods of temperatures above 0 °C threshold will extend active biological periods in terrestrial ecosystems and will reduce the extent of oceanic ice cover, changing phenologies as well as areas of productivity in marine ecosystems, especially those located on the sea ice edge.

4.
Sci Data ; 10(1): 398, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349340

RESUMO

Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system's energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.

5.
Boundary Layer Meteorol ; 186(2): 177-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778901

RESUMO

The lateral transport of heat above abrupt (sub-)metre-scale steps in land surface temperature influences the local surface energy balance. We present a novel experimental method to investigate the stratification and dynamics of the near-surface atmospheric layer over a heterogeneous land surface. Using a high-resolution thermal infrared camera pointing at synthetic screens, a 30 Hz sequence of frames is recorded. The screens are deployed upright and horizontally aligned with the prevailing wind direction. The screen's surface temperature serves as a proxy for the local air temperature. We developed a method to estimate near-surface two-dimensional wind fields at centimetre resolution from tracking the air temperature pattern on the screens. Wind field estimations are validated with near-surface three-dimensional short-path ultrasonic data. To demonstrate the capabilities of the screen method, we present results from a comprehensive field campaign at an alpine research site during patchy snow cover conditions. The measurements reveal an extremely heterogeneous near-surface atmospheric layer. Vertical profiles of horizontal and vertical wind reflect multiple layers of different static stability within 2 m above the surface. A dynamic, thin stable internal boundary layer (SIBL) develops above the leading edge of snow patches protecting the snow surface from warmer air above. During pronounced gusts, the warm air from aloft entrains into the SIBL and reaches down to the snow surface adding energy to the snow pack. Measured vertical turbulent sensible heat fluxes are shown to be consistent with air temperature and wind profiles obtained using the screen method and confirm its capabilities to investigate complex in situ near-surface heat exchange processes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10546-022-00752-3.

6.
Boundary Layer Meteorol ; 182(1): 119-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068494

RESUMO

The influence of drifting and blowing snow on surface mass and energy exchange is difficult to quantify due to limitations in both measurements and models, but is still potentially very important over large areas with seasonal or perennial snow cover. We present a unique set of measurements that make possible the calculation of turbulent moisture, heat, and momentum fluxes during conditions of drifting and blowing snow. From the data, Monin-Obukhov estimation of bulk fluxes is compared to eddy-covariance-derived fluxes. In addition, large-eddy simulations with sublimating particles are used to more completely understand the vertical profiles of the fluxes. For a storm period at the Syowa S17 station in East Antarctica, the bulk parametrization severely underestimates near-surface heat and moisture fluxes. The large-eddy simulations agree with the eddy-covariance fluxes when the measurements are minimally disturbed by the snow particles. We conclude that overall exchange over snow surfaces is much more intense than current models suggest, which has implications for the total mass balance of the Antarctic ice sheet and the cryosphere. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s10546-021-00653-x.

7.
Proc Natl Acad Sci U S A ; 116(4): 1162-1167, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30617063

RESUMO

Our work explores the prospect of bringing the temporal production profile of solar photovoltaics (PV) into better correlation with typical electricity consumption patterns in the midlatitudes. To do so, we quantify the potential of three choices for PV installations that increase production during the winter months when electricity is most needed. These are placements that favor (i) high winter irradiance, (ii) high ground-reflected radiation, and (iii) steeper-than-usual panel tilt angles. In addition to spatial estimates of the production potential, we compare the performance of different PV placement scenarios in urban and mountain environments for the country of Switzerland. The results show that the energy deficit in a future fully renewable production from wind power, hydropower, and geothermal power could be significantly reduced when solar PV is installed at high elevations. Because the temporal production patterns match the typical demand more closely than the production in urban environments, electricity production could be shifted from summer to winter without reducing the annual total production. Such mountain installations require significantly less surface area and, combined with steeper panel tilt angles, up to 50% of the winter deficit in electricity production can be mediated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA