Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Tipo de estudo
Intervalo de ano de publicação
1.
Front Genet ; 15: 1435793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119576

RESUMO

Introduction: To enhance the beef cattle industry, Heilongjiang Province has developed a new Crossbred beef cattle variety through crossbreeding with exotic commercial breeds. This new variety exhibits relatively excellent meat quality, and efficient reproductive performance, catering to market demands. Method: This study employed whole genome resequencing technology to analyze the genetic pedigree and diversity of 19 Heilongjiang Crossbred beef cattle, alongside 59 published genomes from East Asian, Eurasian, and European taurine cattle as controls. In addition, genes related to production traits were also searched by identifying Runs of Homozygosity (ROH) islands and important fragments from ancestors. Results: A total of 14,427,729 biallelic SNPs were discovered, with the majority located in intergenic and intron regions and a small percentage in exon regions, impacting protein function. Population genetic analyses including Principal Component Analysis (PCA), Neighbor-Joining (NJ) tree, and ADMIXTURE identified Angus, Holstein, and Mishima as the main ancestors of Crossbred beef cattle. In genetic diversity analysis, nucleotide diversity, linkage disequilibrium, and inbreeding coefficient analysis reveal that the genetic diversity of Crossbred beef cattle is at a moderate level, and a higher inbreeding coefficient indicates the need for careful breeding management. In addition, some genes related to economic traits are identified through the identification of Runs of Homozygosity (ROH) islands and important fragments from ancestors. Conclusion: This comprehensive genomic characterization supports the targeted improvement of economically important traits in Crossbred beef cattle, facilitating advanced breeding strategies.

2.
Genes (Basel) ; 15(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062688

RESUMO

(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sequenciamento Completo do Genoma , Animais , Cabras/genética , Sequenciamento Completo do Genoma/métodos , Polimorfismo de Nucleotídeo Único/genética , Filogenia , China , Cruzamento , Genoma/genética , Variação Genética
3.
Sci Bull (Beijing) ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38945748

RESUMO

During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.

4.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840048

RESUMO

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Assuntos
Variação Genética , Seleção Genética , Sequenciamento Completo do Genoma , Bovinos/genética , Animais , Sequenciamento Completo do Genoma/métodos , Desequilíbrio de Ligação , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Genoma , Genética Populacional , Cruzamento , Locos de Características Quantitativas , Fenótipo
5.
Anim Genet ; 55(4): 511-526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38726735

RESUMO

Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.


Assuntos
Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Sequenciamento Completo do Genoma/veterinária , Variação Genética , Cruzamento , Índia
6.
Anim Genet ; 55(4): 575-587, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806279

RESUMO

Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sequenciamento Completo do Genoma , Animais , Cabras/genética , Sequenciamento Completo do Genoma/veterinária , Cruzamento , Genética Populacional , China , Variação Genética , Desequilíbrio de Ligação
8.
Front Genet ; 15: 1326828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544805

RESUMO

Xiangdong black goats, indigenous to Hunan Province, China, exhibit remarkable adaptation to challenging environments and possess distinct black coat coloration alongside exceptional meat quality attributes. Despite their significance, comprehensive genomic investigations of this breed have been notably lacking. This study involved a comprehensive examination of population structure, genomic diversity, and regions of selection in Xiangdong black goats utilizing whole-genome sequencing data from 20 samples of this breed and 139 published samples from six other Chinese goat breeds. Our genomic analysis revealed a total of 19,133,125 biallelic single nucleotide polymorphisms (SNPs) within the Xiangdong black goat genome, primarily located in intergenic and intronic regions. Population structure analysis indicated that, compared with Jintang, Guizhou and Chengdu goats, Xiangdong black goats exhibit a reduced level of genetic differentiation but exhibit relatively greater divergence from Jining goats. An examination of genetic diversity within Xiangdong black goats revealed a moderate level of diversity, minimal inbreeding, and a substantial effective population size, which are more reflective of random mating patterns than other Chinese goat breeds. Additionally, we applied four distinct selective sweep methods, namely, the composite likelihood ratio (CLR), fixation index (F ST), θ π ratio and cross-population extended haplotype homozygosity (XP-EHH), to identify genomic regions under positive selection and genes associated with fundamental biological processes. The most prominent candidate genes identified in this study are involved in crucial aspects of goat life, including reproduction (CCSER1, PDGFRB, IFT88, LRP1B, STAG1, and SDCCAG8), immunity (DOCK8, IL1R1, and IL7), lactation and milk production (SPP1, TLL1, and ERBB4), hair growth (CHRM2, SDC1, ITCH, and FGF12), and thermoregulation (PDE10A). In summary, our research contributes valuable insights into the genomic characteristics of the Xiangdong black goat, underscoring its importance and utility in future breeding programs and conservation initiatives within the field of animal breeding and genetics.

9.
Anim Biotechnol ; 35(1): 2314104, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38426908

RESUMO

Previous researches revealed a copy number variation (CNV) region in the bovine fibroblast growth factor 13 (FGF13) gene. However, its effects remain unknown. This study detected the various copy number types in seven Chinese cattle breeds and analysed their population genetic characteristics and effects on growth traits and transcription levels. Copy number Loss was more frequent in Caoyuan Red cattle and Xianan cattle than in the other breeds. Association analysis between CNV and growth traits of Qinchuan indicated that the CNV was significantly related to chest depth, hip width and hucklebone width (P < 0.05). Additionally, the growth traits of individuals with copy number Loss were significantly inferior to those with copy number Gain or Median (P < 0.05). Besides, we found two splicing isoforms, AS1 and AS2, in FGF13 gene, which resulted from alternative 5' splicing sites of intron 1. These isoforms showed varied expression levels in various tissues. Moreover, CNV was significantly and negatively associated with the mRNA expression of AS1 (r = -0.525, P < 0.05). The CNVs in bovine FGF13 gene negatively regulated growth traits and gene transcription. These observations provide new insights into bovine FGF13 gene, delivering potentially useful information for future Chinese cattle breeding programs.


Assuntos
Processamento Alternativo , Variações do Número de Cópias de DNA , Fatores de Crescimento de Fibroblastos , Humanos , Animais , Bovinos/genética , Variações do Número de Cópias de DNA/genética , Processamento Alternativo/genética , Fenótipo , Isoformas de Proteínas/genética
10.
Anim Genet ; 55(3): 352-361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436096

RESUMO

Local species exhibit distinctive indigenous characteristics while showing unique productive and phenotypic traits. However, the advent of commercialization has posed a substantial threat to the survival of indigenous species. Anxi cattle, an endangered native breed in China, have evolved unique growth and reproductive characteristics in extreme desert and semidesert ecosystems. In this study, we conducted a genomic comparison of 10 Anxi cattle genomes with those of five other global populations/breeds to assess genetic diversity and identify candidate genomic regions in Anxi cattle. Population structure and genetic diversity analyses revealed that Anxi cattle are part of the East Asian cattle clade, exhibiting higher genetic diversity than commercial breeds. Through selective sweep analysis, we identified specific genetic variations linked to the environmental adaptability of Anxi cattle. Notably, we identified several candidate genes, including CERS3 involved in regulating skin permeability and antimicrobial functions, RBFOX2 associated with cardiac development, SLC16A7 participated in the regulation of pancreatic endocrine function, and SPATA3 related to reproduction. Our findings revealed the distinctive genomic features of Anxi cattle in dryland environments, provided invaluable insights for further research and breed preservation, and had important significance for enriching the domestic cattle breeding gene bank.


Assuntos
Espécies em Perigo de Extinção , Animais , Bovinos/genética , China , Cruzamento , Variação Genética , Genoma , Adaptação Fisiológica/genética
11.
Anim Genet ; 55(3): 362-376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480515

RESUMO

Qaidam cattle are a typical Chinese native breed inhabiting northwest China. They bear the characteristics of high cold and roughage tolerance, low-oxygen adaptability and good meat quality. To analyze the genetic diversity of Qaidam cattle, 60 samples were sequenced using whole-genome resequencing technology, along with 192 published sets of whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, North Chinese cattle breeds, East Asian taurine cattle, Eurasian taurine cattle and European taurine cattle as controls. It was found that Qaidam cattle have rich genetic diversity in Bos taurus, but the degree of inbreeding is also high, which needs further protection. The phylogenetic analysis, principal component analysis and ancestral component analysis showed that Qaidam cattle mainly originated from East Asian taurine cattle. Qaidam cattle had a closer genetic relationship with the North Chinese cattle breeds and the least differentiation from Mongolian cattle. Annotating the selection signals obtained by composite likelihood ratio, nucleotide diversity analysis, integrated haplotype score, genetic differentiation index, genetic diversity ratio and cross-population extended haplotype homozygosity methods, several genes associated with immunity, reproduction, meat, milk, growth and adaptation showed strong selection signals. In general, this study provides genetic evidence for understanding the germplasm characteristics of Qaidam cattle. At the same time, it lays a foundation for the scientific and reasonable protection and utilization of genetic resources of Chinese local cattle breeds, which has great theoretical and practical significance.


Assuntos
Variação Genética , Seleção Genética , Sequenciamento Completo do Genoma , Animais , Bovinos/genética , China , Sequenciamento Completo do Genoma/veterinária , Filogenia , Cruzamento , Haplótipos
12.
BMC Genomics ; 25(1): 201, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383305

RESUMO

To gain a deeper understanding of the metabolic differences within and outside the body, as well as changes in transcription levels following estrus in yaks, we conducted transcriptome and metabolome analyses on female yaks in both estrus and non-estrus states. The metabolome analysis identified 114, 13, and 91 distinct metabolites in urine, blood, and follicular fluid, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted an enrichment of pathways related to amino acid and lipid metabolism across all three body fluids. Our transcriptome analysis revealed 122 differentially expressed genes within microRNA (miRNA) and 640 within long non-coding RNA (lncRNA). Functional enrichment analysis of lncRNA and miRNA indicated their involvement in cell signaling, disease resistance, and immunity pathways. We constructed a regulatory network composed of 10 lncRNAs, 4 miRNAs, and 30 mRNAs, based on the targeted regulation relationships of the differentially expressed genes. In conclusion, the accumulation of metabolites such as amino acids, steroids, and organic acids, along with the expression changes of key genes like miR-129 during yak estrus, provide initial insights into the estrus mechanism in yaks.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Bovinos , Líquido Folicular , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Estro/genética , Redes Reguladoras de Genes
13.
Int J Biol Macromol ; 261(Pt 2): 129779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290628

RESUMO

Skeletal muscle growth and development in livestock and poultry play a pivotal role in determining the quality and yield of meat production. However, the mechanisms of myogenesis are remained unclear due to it finely regulated by a complex network of biological macromolecules. In this study, leveraging previous sequencing data, we investigated a differentially expressed circular RNA (circSGCB) present in fetal and adult muscle tissues among various ruminant species, including cattle, goat, and sheep. Our analysis revealed that circSGCB is a single exon circRNA, potentially regulated by an adjacent bovine enhancer. Functional analysis through loss-of-function tests demonstrated that circSGCB exerts inhibitory effects on bovine myoblast proliferation while promoting myocytes generation. Furthermore, we discovered that circSGCB primarily localizes to the cytoplasm, where it functions as a molecular sponge by binding to bta-miR-27a-3p. This interaction releases the mRNAs of KLF3 gene and further activates downstream functional pathways. In vivo, studies provided evidence that up-regulation of KLF3 contributes to muscle regeneration. These findings collectively suggest that circSGCB operates via a competing endogenous RNA (ceRNA) mechanism to regulate KLF3, thereby influencing myogenesis in ruminants and highlights it may as potential molecular targets for enhancing meat production in livestock and poultry industries.


Assuntos
MicroRNAs , Bovinos , Animais , Ovinos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Endógeno Competitivo , RNA Circular/genética , RNA Mensageiro/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo
14.
Anim Biotechnol ; 35(1): 2299944, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38164963

RESUMO

Cattle are sensitive to temperature fluctuations but adapt well to inclement weather conditions. When environmental temperatures exceed specific thresholds, heat stress becomes a critical concern for cattle. The TRPM2 gene, which resides on cattle chromosome 1 encodes a TRP channel protein, holding a unique capacity to sense temperature changes and facilitate rapid response to avoid heat stress. Here, we utilized the Bovine Genome Variation Database (BGVD) (http://animal.omics.pro/code/index.php/BosVar), and identified a missense mutation site, c.805A > G: p. Met269Val (rs527146862), within the TRPM2 gene. To elucidate the functional assessment of this mutation in temperature adaptation attributes of Chinese cattle, we genotyped 407 samples from 20 distinct breeds representing diverse climatic zones across China. The association analysis incorporates three temperature parameters and revealed compelling insights in terms of allele frequency. Interestingly, the prevalence of the wild-type allele A was notably higher among northern cattle breeds and this trend diminished gradually as observed in southern cattle populations. Conversely, the mutant-type allele G demonstrated a contrasting trend. Moreover, southern cattle exhibited markedly higher frequencies of GG and GA genotypes (P < 0.01). The presence of heterozygous and homozygous mutations appears to confer an enhanced capacity for adaptation to elevated temperatures. These results provide unequivocal correlation evidence between TRPM2 genotypes (AA, GA, GG) and environmental temperature parameters and comprehend the genetic mechanisms governing temperature adaptation in cattle. This provides valuable insights for strategic breed selection across diverse climatic regions, thereby aiding livestock production amid evolving climate challenges.


The TRPM2 gene encodes TRP channel protein that helps animals in combating heat stress. Twenty Chinese local cattle breeds were genotyped, and association analysis was performed. This investigation encompasses the distribution pattern of the missense mutation locus rs527146862 of the TRPM2 gene in southern, northern, and central cattle populations. The results demonstrated a significant relationship between rs527146862 locus and temperature adaptation attributes in Chinese cattle.


Assuntos
Canais de Cátion TRPM , Bovinos/genética , Animais , Temperatura , Canais de Cátion TRPM/genética , Frequência do Gene , Genótipo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
15.
Genet. mol. biol ; 33(2): 266-270, 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-548823

RESUMO

The association of IGF-I gene polymorphisms with certain traits in 708 individuals of two Chinese dairy-goat breeds (Guanzhong and Xinong Saanen) was investigated. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods were employed in screening for genetic variation. Two novel mutations were detected in the 5'-flanking region and in intron 4 of IGF-I gene, viz., g.1617 G > A and g.5752 G > C (accession D26119.2), respectively. The associations of the g.1617 G > A mutation with milk yield and the body size were not significant (p > 0.05). However, in the case of g.5752 G > C, Xinong Saanen dairy goats with the CG genotype presented longer bodies (p < 0.05). Chest circumference (p < 0.05) was larger in Guanzhong goats with the GG genotype. In Xinong Saanen dairy goats with the CC genotype, milk yields were significantly higher during the first and second lactations (p < 0.05). Hence, the g.5752 G > C mutation could facilitate association analysis and serve as a genetic marker for Chinese dairy-goat breeding and genetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA