Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(1): 2267-2276, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573932

RESUMO

Shear-thickening materials have been widely applied in fields related to smart impact protection due to their ability to absorb large amounts of energy during sudden shock. Shear-thickening materials with multifunctional properties are expanding their applications in wearable electronics, where tactile sensors require interconnected networks. However, current bifunctional shear-thickening cross-linked polymer materials depend on supramolecular networks or slightly dynamic covalently cross-linked networks, which usually exhibit lower energy-absorption density than the highly dynamic covalently cross-linked networks. Herein, we employed boric ester-based covalent adaptive networks (CANs) to elucidate the shear-thickening property and the mechanism of energy dissipation during sudden shock. Guided by the enhanced energy-absorption capability of double networks and the requirements of the conductive networks for the wearable tactile sensors, tungsten powders (W) were incorporated into the boric ester polymer matrix to form a second network. The W networks make the materials stiffer, with a 13-fold increase in Young's modulus. Additionally, the energy-absorption capacity increased nearly 7 times. Finally, we applied these excellent energy-absorbing and conductive materials to bifunctional shock-protective and strain rate-dependent tactile sensors. Considering the self-healable and recyclable properties, we believe that these anti-impact and tactile sensing materials will be of great interest in wearable devices, smart impact-protective systems, post-tunable materials, etc.

2.
Isotopes Environ Health Stud ; 57(5): 492-515, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34269607

RESUMO

The Upper Cibolo Creek (UCC) karst watershed in Central Texas, USA, represents a portion of the drainage area that supplies water to the recharge zone for the Edwards Aquifer. However, the surface water-groundwater interactions along the UCC are not well quantified, and the hydraulic interactions are important for water budget and water quality of the aquifer. In this study, we investigated the evolution of hydrochemical and isotopic signatures (δ18O, δ2H and d-excess) from precipitation, surface water to groundwater in the UCC watershed from 2017 to 2019, and investigated surface water-groundwater interactions using samples from 14 creeks/spring sites. Factor analysis for the observed parameters demonstrates that changes in water hydrochemistry are primarily controlled by human activity, precipitation input, and water-rock interaction. Hierarchical clustering analysis of temporal isotope variations confirms that significant surface water-groundwater interactions occur in the UCC watershed. We identified relationships between nitrate concentrations at creek/spring sites and land-use conditions, and nitrate input sources were determined utilizing the dual-isotope analyses (δ15N and δ18O) of nitrate. This study provides capacity for a more precise assessment of water resources and water quality in Central Texas.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Texas , Poluentes Químicos da Água/análise , Qualidade da Água
3.
Water Res ; 122: 512-525, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624734

RESUMO

How eutrophication affects biogeochemical processes of hydrophobic organic contaminants (HOCs) in aquatic environments is a pending challenge. Although the direct influence of eutrophication on biogeochemical processes of HOCs in waters has been well addressed, the indirect influence of eutrophication on biogeochemical processes of HOCs remains largely unknown. Here we take the large shallow eutrophic Lake Taihu in China and polycyclic aromatic hydrocarbons (PAHs) as examples to provide novel knowledge on the indirect influence of eutrophication on air - water exchange fluxes, sinking fluxes, and occurrence of HOCs. The air - water exchange fluxes of individual PAHs varied dramatically at different sites in all studied seasons. The sinking flux of ΣPAH16 was 14 855.3 ± 1579.9, 3548.9 ± 650.6, and 5588.4 ± 530.7 ng m-2 d-1 in spring, summer, and winter. The corresponding concentration of ΣPAH16 in surface sediments was 713.1 ± 78.6, 339.7 ± 36.6, and 293.0 ± 35.2 ng g-1 d.w. Our study for the first time suggested that recruitment of cyanobacteria from surface sediments to water column in spring reduced the concentrations of PAHs in surface sediments, but enhanced their concentrations in the bulk water column, and overwintering of cyanobacteria in winter enhanced the concentrations of PAHs in surface sediments. High pH induced indirectly by eutrophication decreased seasonal air - water exchange fluxes (enhanced net volatilization) of PAHs, reduced the aromaticity of surface sediments and the hydrophobicity of phytoplankton cell surface, and reduced the accumulation of PAHs in surface sediments and phytoplankton consequently. Sinking fluxes and daily loss of PAHs from the water column decreased with phytoplankton biomass because the fraction of organic matter sinking from the water column decreased with phytoplankton biomass. Our study provides novel complementary knowledge for the biological pump for HOCs, and has important implications for understanding the coupling between eutrophication and biogeochemical processes of HOCs in subtropical shallow eutrophic waters.


Assuntos
Monitoramento Ambiental , Eutrofização , Hidrocarbonetos Policíclicos Aromáticos , China , Sedimentos Geológicos , Água , Poluentes Químicos da Água
4.
Environ Pollut ; 223: 624-634, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28173953

RESUMO

To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios.


Assuntos
Mudança Climática , Monitoramento Ambiental , Cadeia Alimentar , Lagos/química , Fitoplâncton/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Zooplâncton/metabolismo , Animais , China , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Temperatura , Poluentes Químicos da Água/análise
5.
Sci Rep ; 5: 17419, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26615891

RESUMO

Heavy metal pollution is now widely recognized to pose severe health and environmental threats, yet much of what is known concerning its adverse impacts on ecosystem health is derived from short-term ecotoxicological studies. Due to the frequent absence of long-term monitoring data, little is known of the long-tem ecological consequences of pollutants such as arsenic. Here, our dated sediment records from two contaminated lakes in China faithfully document a 13.9 and 21.4-fold increase of total arsenic relative to pre-1950 background levels. Concurrently, coherent responses in keystone biota signal pronounced ecosystem changes, with a >10-fold loss in crustacean zooplankton (important herbivores in the food webs of these lake systems) and a >5-fold increase in a highly metal-tolerant alga. Such fundamental ecological changes will cascade through the ecosystem, causing potentially catastrophic consequences for ecosystem services in contaminated regions.


Assuntos
Arsênio/análise , Ecossistema , Água Doce/análise , Poluentes Químicos da Água/análise , Biodiversidade , China , Monitoramento Ambiental , Metais Pesados/análise
6.
PLoS One ; 9(7): e102167, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033404

RESUMO

Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.


Assuntos
Mudança Climática , Monitoramento Ambiental , Sedimentos Geológicos/química , Lagos/química , Carbono/análise , Carbono/química , China , Clima , Meio Ambiente , Sedimentos Geológicos/análise , Atividades Humanas , Humanos , Lagos/análise , Nitrogênio/análise , Nitrogênio/química
7.
Environ Sci Pollut Res Int ; 21(3): 1875-1883, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23990257

RESUMO

Tibetan Plateau is the world's highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p'-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, ß-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm(-2) year(-1), respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and ß-HCH in both the surface soils and the sediment core. Concentrations of both α- and ß-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm(-2) year(-1) in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p'-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p'-DDX was 44 pg cm(-2) year(-1), which appeared in the mid-1960s. Local emission of p,p'-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.


Assuntos
Diclorodifenil Dicloroetileno/análise , Sedimentos Geológicos/química , Lagos/química , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , DDT/análise , Monitoramento Ambiental/métodos , Hexaclorocicloexano/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA