Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 27(1): 75, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507801

RESUMO

BACKGROUND: Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS: Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS: PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION: This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.

2.
Carbohydr Polym ; 316: 121018, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321721

RESUMO

Herein, hyaluronic acid (HA) and ß-cyclodextrin (ß-CD) is used to form targeted drug delivery platform HCPC/DEX NPs with previously prepared carbon dots (CDs) as cross-linker, dexamethasone (DEX) is loaded for rheumatoid arthritis (RA) treatment. The drug loading capacity of ß-CD and M1 macrophage targeting of HA were utilized for efficient delivery of DEX to the inflammatory joints. Because of the environmental responsive degradation of HA, DEX can be released in 24 h and inhibit the inflammatory response in M1 macrophages. The drug loading of NPs is 4.79 %. Cellular uptake evaluation confirmed that NPs can specifically target to M1 macrophages via HA ligands, the uptake of M1 macrophages is 3.7 times that of normal macrophages. In vivo experiments revealed that NPs can accumulate in RA joints to alleviate inflammation and accelerate cartilage healing, the accumulation can be observed in 24 h. The cartilage thickness increased to 0.45 mm after HCPC/DEX NPs treatment, indicating its good RA therapeutic effect. Importantly, this study was the first to utilize the potential acid and reactive oxygen species responsiveness of HA to release drug and prepare M1 macrophage targeting nanodrug for RA treatment, which provides a safe and effective RA therapeutic strategy.


Assuntos
Artrite Reumatoide , Nanopartículas , Humanos , Ácido Hialurônico/metabolismo , Macrófagos/metabolismo , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Nanopartículas/uso terapêutico
3.
Carbohydr Polym ; 313: 120884, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182972

RESUMO

Based on the biocompatibility and macrophage targeting of natural polysaccharides, combined with the physiological and pathological characteristics of the gastrointestinal tract and colonic mucosa of ulcerative colitis (UC), we prepare dexamethasone (Dex)-loaded oral colon-targeted nano-in-micro drug delivery systems coated with multilayers of chitosan (CS), hyaluronic acid (HA), and finally Eudragit S100 (ECHCD MPs) using a layer-by-layer coating technique for UC treatment through regulating the M1/M2 polarization of intestinal macrophages. HA/CS/Dex nanoparticles (HCD NPs) are ingested by macrophages via CD44 receptor-mediated endocytosis to regulate M1-to-M2 macrophage polarization and exert anti-inflammatory effects. Moreover, ECHCD MPs show better colon-targeting properties than Dex-loaded chitosan nanoparticles (CD NPs) and HCD NPs which is demonstrated by stronger mucoadhesion to inflamed colon tissues. After oral administration, ECHCD MPs exert significant anti-UC effects. Therefore, ECHCD MPs are proven to be as promising oral colon-targeting drug delivery systems for Dex and have potential application in UC treatment.


Assuntos
Quitosana , Colite Ulcerativa , Colite , Nanopartículas , Humanos , Ácido Hialurônico/farmacologia , Quitosana/farmacologia , Sistemas de Liberação de Medicamentos , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Macrófagos , Colo
4.
ACS Biomater Sci Eng ; 9(2): 1089-1103, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700559

RESUMO

The oxygen-consuming property of photodynamic therapy (PDT) affects its effects and aggravates tumor hypoxia, thus upregulating the vascular endothelial growth factor (VEGF) to exacerbate tumor metastasis and lead to treatment failure. Therefore, it is necessary to monitor the dynamic changes in the factors related to PDT and tumor development trends in real time, thus helping to improve PDT efficiency. This study fabricated a fluorescent probe, TPE-2HPro, and a fluorescein-labeled aptamer probe, FAM-AptamerVEGF, to detect hydrogen peroxide (H2O2) and VEGF through the photoinduced electron-transfer effect and the specific affinity of the aptamer to VEGF, respectively. The two probes were loaded into the inner pores and absorbed on the surface of polydopamine coating-wrapped mesoporous silica nanoparticles (MSN@PDA) to construct the dual-probe-loaded system, MSNTH@PDAApt, which was kept stable in fetal bovine serum (FBS) solution and achieved pH-responsive release behavior, thus helping to increase the accumulation of the two probes in tumor cells. The dichloroacetic acid-mediated in vitro antitumor tests showed that the changing trends of H2O2 and VEGF levels were consistent with the results of related mechanism studies and could be monitored by MSNTH@PDAApt. The in vitro chlorin e6 (Ce6)-mediated PDT treatment demonstrated that when the illumination condition was 650 nm, 50 mW/cm2 for 10 min, cells were more inclined to metastasis and invasion rather than death due to a substantial increase in VEGF expression at the low Ce6 concentrations. With the increase of the Ce6 concentration, the growth of the H2O2 level gradually exceeded that of VEGF, and the reactive oxygen species (ROS)-mediated cell death dominated when the Ce6 concentration was about 2 times its IC50 values. Besides, hypoxia also affected the H2O2 and VEGF changes. These results demonstrated that MSNTH@PDAApt could precisely monitor and assess the tumor development trends during PDT treatment, thus helping improve the treatment effect.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fator A de Crescimento do Endotélio Vascular , Peróxido de Hidrogênio/farmacologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA