Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913441

RESUMO

BACKGROUND: Losing or donating a kidney is associated with risks of developing hypertension and albuminuria. Few studies address mechanisms or interventions. We investigate potential benefits of a K+- alkali-enriched diet and the mechanisms underlying proteinuria. METHODS: Male Sprague Dawley rats were fed either a 2% NaCl + 0.95% KCl diet (HNa-LK) or a 0.74% NaCl + 3% K+-alkali diet (HK-alk) for 3 wk prior to uninephrectomy then maintained on respective diets for 12 wk. Blood pressure (by tail-cuff), urine, blood and kidney proteins were analyzed Pre- and Post-uninephrectomy. RESULTS: Pre-uninephrectomy, HK-alk vs. HNa-LK fed rats exhibited similar blood pressures and plasma [K+], [Na+], but lower proximal (NHE3, NBCe1, NaPi2) and higher distal (NCC, ENaC, pendrin) transporter abundance, a pattern facilitating K+ and HCO3- secretion. Post-uninephrectomy, single nephron GFR rose 50% and Li+ clearance doubled with both diets; in HK-alk vs HNa-LK: the rise in blood pressure was less and ammoniagenesis was lower, abundance of proximal tubule transporters remained lower, ENaC-α fell and NCCp rose consistent with K+ conservation. Post-uninephrectomy, independent of diet, albuminuria increased 8-fold and abundance of endocytic receptors was reduced (megalin by 44%, dab2 by 25-35%) and KIM-1 was increased. CONCLUSIONS: The K-alkali-enriched diet blunted post-uninephrectomy hypertension and facilitated acid clearance by suppressing proximal Na+ transporters and increasing K+ -alkali secretion. Further, uninephrectomy associated proteinuria could be attributed, at least in part, to elevated SNGFR coupled to downregulation of megalin which reduced fractional protein endocytosis and Vmax.

2.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G3-G15, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874654

RESUMO

Concentrated animal feeding operations (CAFOs) are responsible for the production of global greenhouse gases and harmful environmental pollutants including hydrogen sulfide, ammonia, and particulate matter. Swine farmers are frequently exposed to organic dust that is proinflammatory in the lung and are thus at greater risk of developing pneumonia, asthma, and other respiratory conditions. In addition to respiratory disease, air pollutants are directly associated with altered gastrointestinal (GI) physiology and the development of GI diseases, thereby highlighting the gut-lung axis in disease progression. Instillation of hog dust extract (HDE) for 3 wk has been reported to promote the development of chronic airway inflammation in mice, however, the impact of HDE exposure on intestinal homeostasis is poorly understood. We report that 3-wk intranasal exposure of HDE is associated with increased intestinal macromolecule permeability and elevated serum endotoxin concentrations in C57BL/6J mice. In vivo studies also indicated mislocalization of the epithelial cell adhesion protein, E-cadherin, in the colon as well as an increase in the proinflammatory cytokine, Tnfα, in the proximal colon. Moreover, mRNA expression of the Paneth cell-associated marker, Lyz1, was increased the proximal colon, whereas the expression of the goblet cell marker, Muc2, was unchanged in the epithelial cells of the ileum, cecum, and distal colon. These results demonstrate that airway exposure to CAFOs dusts promote airway inflammation and modify the gastrointestinal tract to increase intestinal permeability, induce systemic endotoxemia, and promote intestinal inflammation. Therefore, this study identifies complex physiological consequences of chronic exposure to organic dusts derived from CAFOs on the gut-lung axis.NEW & NOTEWORTHY Agricultural workers have a higher prevalence of occupational respiratory symptoms and are at greater risk of developing respiratory diseases. However, gastrointestinal complications have also been reported, yet the intestinal pathophysiology is understudied. This work is novel because it emphasizes the role of an inhaled environmental pollutant on the development of intestinal pathophysiological outcomes. This work will provide foundation for other studies evaluating how agricultural dusts disrupts host physiology and promotes debilitating gastrointestinal and systemic disorders.


Assuntos
Poeira , Endotoxemia , Camundongos , Animais , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Inflamação
3.
Cell Mol Gastroenterol Hepatol ; 16(1): 39-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030630

RESUMO

BACKGROUND & AIMS: Loss-of-function variants in the PTPN2 gene are associated with increased risk of inflammatory bowel disease. We recently showed that Ptpn2 is critical for intestinal epithelial cell (IEC) barrier maintenance, IEC-macrophage communication, and modulation of the gut microbiome in mice, restricting expansion of a small intestinal pathobiont associated with inflammatory bowel disease. Here, we aimed to identify how Ptpn2 loss affects ileal IEC subtypes and their function in vivo. METHODS: Constitutive Ptpn2 wild-type, heterozygous, and knockout (KO) mice, as well as mice with inducible deletion of Ptpn2 in IECs, were used in the study. Investigation was performed using imaging techniques, flow cytometry, enteroid culture, and analysis of gene and protein levels of IEC markers. RESULTS: Partial transcriptome analysis showed that expression of Paneth cell-associated antimicrobial peptides Lyz1, Pla2g2a, and Defa6 was down-regulated markedly in Ptpn2-KO mice compared with wild-type and heterozygous. In parallel, Paneth cell numbers were reduced, their endoplasmic reticulum architecture was disrupted, and the endoplasmic reticulum stress protein, C/EBP-homologous protein (CHOP), was increased in Ptpn2-KO mice. Despite reduced Paneth cell number, flow cytometry showed increased expression of the Paneth cell-stimulatory cytokines interleukin 22 and interferon γ+ in CD4+ T cells isolated from Ptpn2-KO ileum. Key findings in constitutive Ptpn2-KO mice were confirmed in epithelium-specific Ptpn2ΔIEC mice, which also showed impaired lysozyme protein levels in Paneth cells compared with Ptpn2fl/fl control mice. CONCLUSIONS: Constitutive Ptpn2 deficiency affects Paneth cell viability and compromises Paneth cell-specific antimicrobial peptide production. The observed effects may contribute to the increased susceptibility to intestinal infection and dysbiosis in these mice.


Assuntos
Doenças Inflamatórias Intestinais , Celulas de Paneth , Camundongos , Animais , Celulas de Paneth/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Sobrevivência Celular , Doenças Inflamatórias Intestinais/genética , Íleo/metabolismo , Camundongos Knockout
4.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34577540

RESUMO

The epithelial barrier forms the interface between luminal microbes and the host immune system and is the first site of exposure to many of the environmental factors that trigger disease activity in chronic inflammatory bowel disease (IBD). Disruption of the epithelial barrier, in the form of increased intestinal permeability, is a feature of IBD and other inflammatory diseases, including celiac disease and type 1 diabetes. Variants in genes that regulate or belong to the JAK-STAT signaling pathway are associated with IBD risk. Inhibitors of the JAK-STAT pathway are now effective therapeutic options in IBD. This review will discuss emerging evidence that JAK inhibitors can be used to improve defects in intestinal permeability and how this plays a key role in resolving intestinal inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA