Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165776, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499820

RESUMO

Many studies have investigated water quality changes in freshwater lakes, however, studies examining long-term relationships between lake water quality and total nitrogen (TN) and total phosphorus (TP) load inputs and investigating the causes that indicate improvements in water quality are limited. In this study, we utilized the LOADEST model to estimate TN and TP load inputs, assessed lake trophic status using the integrated nutrient index method, and explored trends and relationships between nutrient load inputs and water quality in Wuliangsuhai Lake, a large shallow lake of Yellow River Basin in China. Additionally, we identified the causes for recent water quality improvements and proposed future management strategies to further improve the water quality. Our findings revealed that water quality in Wuliangsuhai Lake of Yellow River basin has been improved mainly due to the abatements of nutrient load inputs from the watershed. Between 2010 and 2020, TN and TP loads from the watershed decreased significantly by 65.12 % and 89.4 %, respectively. TN and TP concentrations also notably decreased across the lake areas, including the inlet (91.21 % and 95.59 %), central (73.49 % and 87.12 %), and outlet (40.68 % and 40.54 %) areas. Correlation analysis confirms a strong positive relationship between lake water quality and nutrient load inputs (excluding the outlet area), highlighting the impact of nutrient inputs on lake water quality. The results indicated that the recent water quality improvements in the lake was mainly because of effective control for point source pollution from industrial wastewater and domestic sewage and the non-point source pollution control holds the potential to further improve the water quality.

2.
Sci Total Environ ; 899: 165628, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467970

RESUMO

Potato has been promoted as a national key staple food to alleviate pressure on food security in China. Appropriate nitrogen (N) application rate is prerequisite and is crucial for increasing yield, improving fertilizer efficiency, and reducing N losses. In the present study, we determined the optimum N application rates by analyzing field trial data from the main potato producing areas of China between 2004 and 2020. We considered the equilibrium relationships between potato yield, N uptake, partial N balance (PNB), and N2O emission under different soil indigenous N supply (INS) scenarios. The results showed that N rate, INS, and their interactions all significantly affect potato yield and nutrient uptake increment. On average, N application increased potato yield and N uptake by 29.5 % and 56.7 %, respectively. The relationship between N rate and yield increment was linear-plateau, while the relationship between N rate and N uptake increment was linear-linear. Soil INS accounted for 63.5 % of total potato N requirement. Potato yield increment and nutrient uptake increment were exponentially negatively correlated with INS and had a significant parabolic-nonlinear relationship with the interaction of N fertilizer application rate and INS. PNB was negatively correlated with fertilizer N supply intensity as a power function. Based on our analysis, a N application rate of 166 kg N ha-1 was found to be sufficient when the target yield was <34 t ha-1. However, when the target yield reached 40, 50 and 60 t ha-1, the recommended N application rate increased to 182, 211, and 254 kg N ha-1, respectively, while ensuring N2O emissions low with an emission factor of 0.2 %. Our findings will help guide potato farming toward cleaner production without compromising environmental benefit.


Assuntos
Solo , Solanum tuberosum , Óxido Nitroso/análise , Nitrogênio/análise , Fertilizantes/análise , Agricultura , China , Nutrientes
3.
J Environ Manage ; 340: 118002, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119631

RESUMO

Water diverted from rivers for irrigation areas often contains large amounts of nitrogen (N), which is frequently overlooked and its role in contributing to N pollution is unknown. To investigate the influence of water diversion on N in different systems within irrigation areas, we developed and optimized the N footprint model, taking into account the N carried by irrigation water diversion and drainage in irrigated areas. This optimized model can serve as a reference for evaluating N pollution in other irrigated areas. By analyzing 29 years (1991-2019) of statistical data from a diverted irrigation area in Ningxia Hui Autonomous Region (Ningxia), China, the study assessed the contribution of water diversion to N in agriculture, animal husbandry, and human domestic activities. The results demonstrated that water diversion and drainage accounted for 10.3% and 13.8% in whole system, of the total N input and output in Ningxia, highlighting the potential N pollution risks associated with these activities. Additionally, the use of fertilizers in the plant subsystem, feed in the animal subsystem, and sanitary sewage in the human subsystem represented the main sources of N pollution in each subsystem. On a temporal scale, the study found that N loss increased year by year before reaching a stable level, indicating that N loss had reached its peak in Ningxia. The correlation analysis suggested that rainfall could regulate N input and output in irrigated areas by showing a negative correlation with water diversion, agricultural water consumption, and N from irrigated areas. Moreover, the study revealed that the amount of N brought by water diverted from rivers for irrigation should be taken into account when calculating the amount of fertilizer N required in the irrigation area.


Assuntos
Irrigação Agrícola , Nitrogênio , Humanos , Animais , Nitrogênio/análise , Irrigação Agrícola/métodos , Poluição Ambiental/análise , Agricultura/métodos , Água/análise , China , Fertilizantes/análise
4.
Environ Pollut ; 324: 121390, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870596

RESUMO

Dissolved organic carbon (DOC) is a significant component of regional and global carbon cycles and an important surface water quality indicator. DOC affects the processes of solubility, bioavailability and transport for a number of contaminants, such as heavy metals. Therefore, it is crucial to understand DOC fate and transport in the watershed and the transport pathways of DOC load. We modified a previously developed watershed-scale organic carbon model by incorporating the DOC load from glacier melt runoff and used the modified model to simulate periodic daily DOC load in the upper Athabasca River Basin (ARB) in the cold region of western Canada. The calibrated model achieved an overall acceptable performance for simulating daily DOC load with model uncertainties mainly from the underestimation of peak loads. Parameter sensitivity analysis indicates that the fate and transport of DOC load in upper ARB are mainly controlled by DOC production in the soil layers, DOC transport at the soil surface, and reactions in the stream system. The modeling results indicated that the DOC load is mainly from the terrestrial sources and the stream system was a negligible sink in the upper ARB. It also indicated that rainfall-induced surface runoff was the major transport pathway of DOC load in the upper ARB. However, the DOC loads transported by glacier melt runoff were negligible and only accounted for 0.02% of the total DOC loads. In addition, snowmelt-induced surface runoff and lateral flow contributed 18.7% of total DOC load, which is comparable to the contribution from the groundwater flow. Our study investigated the DOC dynamics and sources in the cold region watershed in western Canada and quantified the contribution of different hydrological pathways to DOC load, which could provide a useful reference and insight for understanding watershed-scale carbon cycle processes.


Assuntos
Matéria Orgânica Dissolvida , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Carbono/análise , Solo , Rios
5.
J Environ Manage ; 326(Pt B): 116712, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402022

RESUMO

Controlling non-point source pollution is often difficult and costly. Therefore, focusing on areas that contribute the most, so-called critical source areas (CSAs), can have economic and ecological benefits. CSAs are often determined using a modelling approach, yet it has proved difficult to calibrate the models in regions with limited data availability. Since identifying CSAs is based on the relative contributions of sub-basins to the total load, it has been suggested that uncalibrated models could be used to identify CSAs to overcome data scarcity issues. Here, we use the SWAT model to study the extent to which an uncalibrated model can be applied to determine CSAs. We classify and rank sub-basins to identify CSAs for sediment, total nitrogen (TN), and total phosphorus (TP) in the Fengyu River Watershed (China) with and without model calibration. The results show high similarity (81%-93%) between the identified sediment and TP CSA number and locations before and after calibration both on the yearly and seasonal scale. For TN alone, the results show moderate similarity on the yearly scale (73%). This may be because, in our study area, TN is determined more by groundwater flow after calibration than by surface water flow. We conclude that CSA identification with the uncalibrated model for TP is always good because its CSA number and locations changed least, and for sediment, it is generally satisfactory. The use of the uncalibrated model for TN is acceptable, as its CSA locations did not change after calibration; however, the TN CSA number changed by over 60% compared to the figures before calibration on both yearly and seasonal scales. Therefore, we advise using an uncalibrated model to identify CSAs for TN only if water yield composition changes are expected to be limited. This study shows that CSAs can be identified based on relative loading estimates with uncalibrated models in data-deficient regions.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Rios , Fósforo/análise , Nitrogênio/análise , China , Nutrientes , Água , Monitoramento Ambiental
6.
Sci Total Environ ; 852: 158462, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058334

RESUMO

It is important to protect the quality of the water in the Three Rivers Headwater Region (TRHR), known as the water tower of China, to guarantee the water security in downstream areas. However, because of a lack of long-term studies that span wide geographical areas, it is difficult to understand how the water resource in the TRHR should be protected. In this paper, we report the findings from our analysis of total nitrogen (TN) concentration data from 39 river monitoring stations for the period from 2012 to 2018. The water quality status was evaluated by comparing the concentrations with the national standards and calculating exceedance ratios for surface water. Trends were calculated with ordinary linear least-squares regression and a weighted least-squares (WLS) meta-analysis method. The results showed that the annual average TN concentrations in the TRHR rivers from 2012 to 2018 ranged from 0.68 to 1.06 mg/L, and were lower than those in the downstream reaches but higher than the global average in natural river waters. For the period from 2012 to 2018, the TN concentrations showed a highly significant increase (0.03 mg/L/year) across the entire TRHR and were increasing and decreasing at 71.8 % and 28.2 % of the stations, respectively. From the trend results, we divided the study area into two zones, one with increasing TN concentrations and one with decreasing TN concentrations. It is found that environmental factors had little influence on TN concentrations in the increasing and decreasing areas, but artificial factors such as population and restoration project areas contributed to the increases in TN concentrations in the increasing area. The TRHR remains a source of clean water in China; however, the water quality should be monitored closely, and measures should be implemented to protect the resource and mitigate the disturbances caused by human activities.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Nitrogênio/análise , Rios , Qualidade da Água , China , Poluentes Químicos da Água/análise , Fósforo/análise
7.
J Environ Manage ; 321: 115996, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029628

RESUMO

At present, excessive nutrient inputs caused by human activities have resulted in environmental problems such as agricultural non-point source pollution and water eutrophication. The Net Anthropogenic Nitrogen Inputs (NANI) model can be used to estimate the nitrogen (N) inputs to a region that are related to human activities. To explore the net nitrogen input of human activities in the main grain-producing areas of Northwestern China, the county-level statistical data for the Ningxia province and NANI model parameters were collected, the spatio-temporal distribution characteristics of NANI were analyzed and the uncertainty and sensitivity of the parameters for each component of NANI were quantitatively studied. The results showed that: (1) The average value of NANI in Ningxia from 1991 to 2019 was 7752 kg N km-2 yr-1. Over the study period, the inputs first showed an overall increase, followed by a decrease, and then tended to stabilize. Fertilizer N application was the main contributing factor, accounting for 55.6%. The high value of NANI in Ningxia was mainly concentrated in the Yellow River Diversion Irrigation Area. (2) The 95% confidence interval of NANI obtained by the Monte Carlo approach was compared with the results from common parameters in existing literature. The simulation results varied from -6.4% to 27.4% under the influence of the changing parameters. Net food and animal feed imports were the most uncertain input components affected by parameters, the variation range was -20.7%-77%. (3) The parameters of inputs that accounted for higher proportions of the NANI were more sensitive than the inputs with lower contributions. The sensitivity indexes of the parameters contained in the fertilizer N applications were higher than those of net food and animal feed imports and agricultural N-fixation. This study quantified the uncertainty and sensitivity of parameters in the process of NANI simulation and provides a reference for global peers in the application and selection of parameters to obtain more accurate simulation results.


Assuntos
Fertilizantes , Nitrogênio , Animais , China , Monitoramento Ambiental/métodos , Eutrofização , Fertilizantes/análise , Atividades Humanas , Humanos , Nitrogênio/análise , Rios
8.
Sci Total Environ ; 805: 150441, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818792

RESUMO

Excess phosphorus (P) leached from high fertiliser input cropping systems in northern China is having detrimental effects on water quality. Before improved management can be directed at specific soils and cropping system types estimates of P leached loss apportionment and mitigation potentials across the main soil (fluvo-aquic soil, FAS; cinnamon soil, CS; black soil, BS) areas and cropping systems (protected vegetable fields, PVFs; open vegetable fields, OVFs; cereal fields, CFs) are needed. The present study designed and implemented conventional fertilisation and low input system trials at 75 sites inclusive of these main soils and cropping system types in northern China. At all sites, a uniform lysimeter design (to 0.9 m depth) enabled the collection and analysis of leachate samples from 7578 individual events between 2008 and 2018. In addition, site-specific static and dynamic activity data were recorded. Results showed that annual total phosphorus (TP) leached losses across the main soil areas and cropping systems were 4.99 × 106 kg in northern China. A major finding was PVFs contributed to 48.5% of the TP leached losses but only accounted for 5.7% of the total cropping areas. The CFs and OVFs accounted for 40.3% and 11.2% of the TP leached losses, respectively. Across northern China, the TP leached losses in PVFs and OVFs were greatest in FAS areas followed by CS and BS areas. The higher TP leached losses in FAS areas were closely correlated with greater P fertiliser inputs and irrigation practices. From a management perspective in PVFs and OVFs systems, a decrease of P inputs by 10-30% would not negatively affect yields while protecting water quality. The present study highlights the importance of decreasing P inputs in PVFs and OVFs and supporting soil P nutrient advocacy for farmers in China.


Assuntos
Fósforo , Solo , Agricultura , China , Fertilizantes/análise , Nitrogênio/análise , Fósforo/análise , Verduras , Qualidade da Água
9.
Water Res ; 177: 115767, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32283435

RESUMO

The curve number (CN) method developed by the United States Department of Agriculture (USDA) in 1954 is the most common adopted method to estimate surface runoff. For years, applicability of the CN method is a conundrum when implementing to other countries. Specifically, countries with more complex natural environment may require more dedicated adjustments. Therefore, the current CN look-up table provided by USDA might not be appropriate and could be questionable to be applied directly to regions elsewhere. Some studies have been conducted to modify CN values according to specified natural characteristics in scattered regions of mainland China. However, an integral and representative work is still not available to address potential concerns in general matters. In this study, a large set of rainfall-runoff monitoring data were collected to adjust CN values in 55 study sites across China. The results showed that the revised CN values are largely different from CN look-up table provided by USDA, which would lead to huge errors in runoff estimation. In this study, the revised CN (dubbed CN-China) provides better reference guidelines that are suitable for most natural conditions in China. In addition, scientists and engineers from other parts of the world can take advantage of the proposed work to enhance the quality of future programs related to surface runoff estimation.


Assuntos
Chuva , Movimentos da Água , China , Monitoramento Ambiental
10.
Glob Chang Biol ; 26(6): 3356-3367, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281177

RESUMO

Plastic pollution is a global concern given its prevalence in aquatic and terrestrial ecosystems. Studies have been conducted on the distribution and impact of plastic pollution in marine ecosystems, but little is known on terrestrial ecosystems. Plastic mulch has been widely used to increase crop yields worldwide, yet the impact of plastic residues in cropland soils to soil health and crop production in the long term remained unclear. In this paper, using a global meta-analysis, we found that the use of plastic mulch can indeed increase crop yields on average by 25%-42% in the immediate season due to the increase of soil temperature (+8%) and moisture (+17%). However, the unabated accumulation of film residues in the field negatively impacts its physicochemical properties linked to healthy soil and threatens food production in the long term. It has multiple negative impacts on plant growth including crop yield (at the mean rate of -3% for every additional 100 kg/ha of film residue), plant height (-2%) and root weight (-5%), and soil properties including soil water evaporation capacity (-2%), soil water infiltration rate (-8%), soil organic matter (-0.8%) and soil available phosphorus (-5%) based on meta-regression. Using a nationwide field survey of China, the largest user of plastic mulch worldwide, we found that plastic residue accumulation in cropland soils has reached 550,800 tonnes, with an estimated 6%-10% reduction in cotton yield in some polluted sites based on current level of plastic residue content. Immediate actions should be taken to ensure the recovery of plastic film mulch and limit further increase in film residue loading to maintain the sustainability of these croplands.


Assuntos
Agricultura , Plásticos , China , Produtos Agrícolas , Ecossistema , Abastecimento de Alimentos , Solo
11.
Sci Total Environ ; 714: 136851, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018984

RESUMO

The net anthropogenic phosphorus inputs (NAPI) model has been used extensively to assess changes in phosphorus (P) inputs and cycling in the environment. However, temporary populations have generally been unconsidered in these assessments. In this study, the NAPI model was used to estimate P loads from the 16 towns and villages in the Erhai Lake Basin (ELB), Southwest China and to evaluate the potential impact from temporary residents (tourism). The results showed that the average value P inputs in the basin (estimated at 2384 kg P km-2 year-1) were 5 times the national average level, and that temporary residents contributed 1%. Agriculture accounted for most of the net P, with chemical fertilizers (55% of the inputs) as the main source, followed by food and animal feed. Only 9.54% of the P inputs to the basin were exported. River water quality and NAPI were significantly correlated (P < 0.01). Tourism industry contributes significantly to regional economic growth and prosperity, but its beneficial effects on the economy does not equate with the adverse impact on environment. This study illustrates what is happening in Southwest China and provides scientific evidence that shows we need to find novel ways to reduce nutrients.

12.
Environ Monit Assess ; 192(2): 99, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912244

RESUMO

It is widely acknowledged that dams affect sediment transport and water quality. To support water management of reservoirs, it is useful to explore how the fractions of phosphorus (P) in sediments were changed after the dam was built. The aim of this study was to assess the spatial and temporal trends of the P fractions in sediments from the Miyun Reservoir, a pivotal drinking water supply for Beijing City, the capital of China. Nine surface sediment samples, together with a sediment core, were collected. The concentrations of total P (TP) and their fractions were then determined by using a sequential extraction method. The results showed that the reservoir was classified into three areas spatially based on the TP concentrations, i.e., high (Baihe area), medium (transitional area), and low (Chaohe area) concentrations. The concentrations of iron-bound P (BD-P) and metal oxide-bound P (NaOH-P) were higher in the Baihe and Chaohe regions than those in the transitional area and tended to increase with water depth. Dam construction can lead to the concentrations of P increased in sediments and further increase the potential of internal P loadings. This study revealed the effect of dam construction on sedimentary P accumulation. The results will be helpful in better understanding the mobility and bioavailability of P in the aquatic ecosystem, which aim to achieve a more highly targeted environmental management for this important region.


Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Fósforo/análise , Poluentes Químicos da Água/análise , Pequim , China , Ecossistema , Eutrofização , Ferro/análise , Qualidade da Água , Abastecimento de Água
13.
Huan Jing Ke Xue ; 40(12): 5375-5383, 2019 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854609

RESUMO

The runoff formed by rainfall carrying various land surface materials into rivers and lakes is an important factor leading to a change in water quality, and the characteristics of nitrogen and phosphorus output of rivers under different rainfall intensities are different. This study explores the impact of rainfall intensity on the water quality of the Fengyu River Watershed in the plateau agricultural region, based on the water quality monitoring data of the export section of the Fengyu River Watershed from 2011 to 2013, combined with local rainfall monitoring. The effects of four rainfall intensities (light rain, moderate rain, heavy rain, and torrential rain) on the content of different nitrogen and phosphorus components in water were analyzed. The results show that the rainfall intensity has a significant effect on the nitrogen and phosphorus emissions of the Fengyu River Watershed. The average nitrogen and phosphorus concentrations of all components are lower in light rain (<10 mm) and moderate rain (10-25 mm), and higher in heavy rain (25-50 mm) and torrential rain (50-100 mm). The percentage of NH4+-N (57.14%-76.85%) to TN is larger than that of PN (23.15%-42.86%), and the percentage of TDP (22.73%-28.00%) to TP is smaller than that of PP (72.00%-77.27%). The nitrogen concentration of different forms is:TN > NH4+-N > PN; the phosphorus concentration of different forms is:TP > PP > TDP.

14.
J Environ Manage ; 250: 109477, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479934

RESUMO

Although the real-time monitoring technique has been widely applied due to the improvement of sensors, development of traditional sampling methods is still worth of being discussed due to the economically feasibility. Currently, extreme events (e.g. extreme rainfall caused by climate change) play a relatively important role in nutrient export. However, impacts of extreme events on the optimization of sampling strategy is still not well addressed despite the uncertainty of different frequency sampling programs has been sufficiently discussed in previous studies. Therefore, the corresponding impact of extreme events impact on the optimization of sampling strategy was investigated by examining temporal (i.e., inter-annual and seasonal) variations of available data. Uncertainty of nutrient flux estimates under different sampling frequencies was explored by subsampling daily monitoring data. Results showed that uncertainty in flux estimates differed between nitrogen and phosphorus. The relative error (RE) in annual TN flux estimates ranged from -4.2% to 2.4% (once per three-day) to -21.4-31.1% (monthly sampling), while the RE in annual TP flux estimates varied from -14.1% to 8.2% (once per three-day) to -65.9%-163.4% (monthly sampling). Biweekly and weekly sampling routines are considered the optimal sampling program for total nitrogen (TN) and for total phosphorus (TP) when the extreme events impact were not been considered. The uncertainty of flux estimates with different sampling frequencies increased with the increasing extreme events. High level of uncertainty occurred in years with the most extreme events in 2012 (RE: 21.4-69.0% for TN, 33.3-96.6% for TP), while the lowest can be found in 2011 (RE: 0-20.7% for TN, 0-48.3% for TP) (with the fewest extreme events). In addition, uncertainty in TN and TP flux estimates was generally greater during summer season than during other seasons. These results highlighted the important role of extreme events in nutrient export. Approximately half of the annual TN and TP flux occurred in some extreme days that only accounted for less than 20% in the same year. The onset of these extremes of nutrient export was likely due to the stormflow with addition of external fertilizer and the direct discharge of surface ponding water from paddy fields during special periods of time. These results would be helpful for the optimization of sampling strategy.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitrogênio , Nutrientes , Fósforo
15.
Sci Total Environ ; 650(Pt 2): 2251-2259, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292118

RESUMO

The effects of long-term animal manure application and crop straw incorporation on the migration of carbon (C) and nitrogen (N) deep into the soil profile and the associated N leaching risk in particular have not been thoroughly elucidated to date. Soil profile samples were collected from depths of up to 200 cm from the following four treatments in a 27-year field experiment on the North China Plain: N + phosphorus (P) + potassium (K) fertilizers (NPK), NPK + 22.5 t ha-1 swine manure (NPKM), NPK + 33.7 t ha-1 swine manure (NPKM+) and NPK + straw incorporation (NPKS). The results revealed that long-term manure application and straw incorporation significantly enhanced the soil organic C (SOC) and total N (TN) contents in the upper 20 cm and that this effect was weaker in the deeper soil layers (P < 0.05). Residual nitrate-N (NO3--N) contents at 0 to 40 cm and 120 to 200 cm in the NPKM and NPKM+ were 4-16 and 2-9 times higher than those in the NPK and NPKS, respectively. These results indicated a greater potential for N leaching from manure addition and a higher propensity for NO3--N leaching out of the 40-100 cm soil layer. Pearson relationship analysis demonstrated that NO3--N content was clearly affected by SOC and dissolved organic N (DON) contents along the soil profile (20-200 cm), implying that the higher residual NO3--N contents in the deeper soil from manure addition were partially attributable to the mineralization and nitrification of the downward SOC and DON. Interestingly, a low level of residual NO3--N combined with negative mineralization in the 120-200 cm soil layers of the NPKS treatment was observed, suggesting that straw incorporation promotes soil NO3--N retention. Thus, we concluded that long-term manure application is beneficial for soil NO3--N content retention, whereas long-term straw incorporation benefits NO3--N retention.

16.
Sci Total Environ ; 651(Pt 1): 953-968, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30257234

RESUMO

This study conducted the global sensitivity analysis of the APSIM-Oryza rice growth model under eight climate conditions and two CO2 levels using the extended Fourier Amplitude Sensitivity Test method. Two output variables (i.e. total aboveground dry matter WAGT and dry weight of storage organs WSO) and twenty parameters were analyzed. The ±30% and ±50% perturbations of base values were used as the ranges of parameter variation, and local fertilization and irrigation managements were considered. Results showed that the influential parameters were the same under different environmental conditions, but their orders were often different. Climate conditions had obvious influence on the sensitivity index of several parameters (e.g. RGRLMX, WGRMX and SPGF). In particular, the sensitivity index of RGRLMX was larger under cold climate than under warm climate. Differences also exist for parameter sensitivity of early and late rice in the same site. The CO2 concentration did not have much influence on the results of sensitivity analysis. The range of parameter variation affected the stability of sensitivity analysis results, but the main conclusions were consistent between the results obtained from the ±30% perturbation and those obtained the ±50% perturbation in this study. Compared with existing studies, our study performed the sensitivity analysis of APSIM-Oryza under more environmental conditions, thereby providing more comprehensive insights into the model and its parameters.


Assuntos
Mudança Climática , Oryza/crescimento & desenvolvimento , Clima , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental
17.
Huan Jing Ke Xue ; 39(9): 4189-4198, 2018 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-30188060

RESUMO

Excessive nitrogen inputs from human activities have become the main cause of water eutrophication and related ecological hazards. In order to study the impact of human activities on nitrogen in the basin, and based on statistical data of administrative units in 16 towns and villages, this study used the NANI model to calculate net anthropogenic nitrogen inputs (NANI) at township scale in Erhai Lake basin. Results show that the total amount of NANI in Erhai Lake basin was 29.81×103 t in 2014, and nitrogen input intensity per unit area was 10986 kg·(km2·a)-1, significantly higher than the national average. The input of nitrogen from food by the local tourist population was 0.26×103 t, accounting for 8% of local food nitrogen input. Nitrogen input from chemical fertilizer is the largest NANI input source, accounting for 47% of net nitrogen input in the basin, followed by net nitrogen input of food and feed. The spatial distribution of NANI at township scale shows evident regionalization, with higher values in the north and lower values in the south of the basin. The intensity of NANI in towns with cropland or population is high. The corresponding risk of nitrogen pollution in Erhai Lake basin is therefore a primary concern, and will remain so in the near future.

18.
Sci Total Environ ; 642: 21-32, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894879

RESUMO

Despite the significant impacts of agricultural land on nonpoint source (NPS) nitrogen (N) pollution, little is known about the influence of the distribution and composition of different agricultural land uses on N export at the watershed scale. We used the Soil and Water Assessment Tool (SWAT) to quantify how agricultural distribution (i.e., the spatial distributions of agricultural land uses) and composition (i.e., the relative percentages of different types of agricultural land uses) influenced N export from a Chinese subtropical watershed, accounting for aquatic N retention by river networks. Nitrogen sources displayed high spatial variability, with 40.7% of the total N (TN) export from the watershed as a whole derived from several subwatersheds that accounted for only 18% of the watershed area. These subwatersheds were all located close to the watershed mouth. Agricultural composition strongly affected inputs to the river network. The percentages of dry agricultural land and rice paddy fields, and the number of cattle together explained 70.5% of the variability of the TN input to the river network among different subwatersheds. Total N loading to the river network was positively correlated with the percentage of dry land in total land areas and the number of cattle within subwatersheds, but negatively with the proportion of paddy fields. Distribution of agricultural land uses also affected N export at the mouth of the watershed. Moreover, N retention in the river network increased with increasing N transport distance from source subwatershed to the watershed mouth. Results provide important information to support improved planning of agricultural land uses at the watershed scale that reduces NPS nutrient pollution.

19.
Sci Total Environ ; 633: 230-239, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29574366

RESUMO

The impacts of manure application on soil ammonia (NH3) volatilization and greenhouse gas (GHG) emissions are of interest for both agronomic and environmental reasons. However, how the swine manure addition affects greenhouse gas and N emissions in North China Plain wheat fields is still unknown. A long-term fertilization experiment was carried out on a maize-wheat rotation system in Northern China (Zea mays L-Triticum aestivum L.) from 1990 to 2017. The experiment included four treatments: (1) No fertilizer (CK), (2) single application of chemical fertilizers (NPK), (3) NPK plus 22.5t/ha swine manure (NPKM), (4) NPK plus 33.7t/ha swine manure (NPKM+). A short-term fertilization experiment was conducted from 2016 to 2017 using the same treatments in a field that had been abandoned for decades. The emissions of NH3 and GHGs were measured during the wheat season from 2016 to 2017. Results showed that after long-term fertilization the wheat yields for NPKM treatment were 7105kg/ha, which were higher than NPK (3880kg/ha) and NPKM+ treatments (5518kg/ha). The wheat yields were similar after short-term fertilization (6098-6887kg/ha). The NH3-N emission factors (EFamm) for NPKM and NPKM+ treatments (1.1 and 1.1-1.4%, respectively) were lower than NPK treatment (2.2%) in both the long and short-term fertilization treatments. In the long- and short-term experiments the nitrous oxide (N2O) emission factors (EFnit) for NPKM+ treatment were 4.2% and 3.7%, respectively, which were higher than for the NPK treatment (3.5% and 2.5%, respectively) and the NPKM treatment (3.6% and 2.2%, respectively). In addition, under long and short-term fertilization, the greenhouse gas intensities for the NPKM+ treatment were 33.7 and 27.0kg CO2-eq/kg yield, respectively, which were higher than for the NPKM treatment (22.8 and 21.1kg CO2-eq/kg yield, respectively). These results imply that excessive swine manure application does not increase yield but increases GHG emissions.

20.
Huan Jing Ke Xue ; 39(12): 5375-5382, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628380

RESUMO

Nonpoint source pollution has become a major factor influencing the water quality. Identifying the pathway of nitrogen (N) transport from the source to the watershed mouth is a critical step in taking measures to control this pollution. However, it is difficult to identify the pathway of N transport because the transport pathway varies among different watersheds depending on the difference in the terrain, hydrology, and land cover etc and changes over time. Additionally, there is little knowledge about the major pathway of N transport through agricultural watersheds in the Yunnan Plateau lake area. The pathways of N export and their temporal variations over time were investigated in this study based on a typical agriculture-dominated watershed in a plateau lake area, Yunnan Province, and two-year monitoring data (June 2011-May 2013) in combination with a base flow separation program. The results show that the base flow accounts for most of the streamflow discharge (80.0%) and N export (71.1%). The proportion of the stream flow discharge via storm flow increases significantly with increasing rainfall. Therefore, the percentage of total N (TN) export via storm flow increases with increasing storm flow, which is closely related to rainfall. The major pathway of N export shifts toward storm flow when the storm flow proportion of the stream flow discharge increases up to 40%. During the monitoring period, the proportion of the TN export via storm flow increases up to 65.6% in the rainy season. This study provides important information for the improvement of the management of nonpoint source pollution at the watershed scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA