Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancer Discov ; : OF1-OF22, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270272

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth. SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.

2.
Cancer Discov ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241033

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

4.
SAGE Open Med Case Rep ; 11: 2050313X231197321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667743

RESUMO

A female infant, born at 37 week 5 days to a mother via induced vaginal delivery for preeclampsia, was prenatally diagnosed with a right aortic arch with vascular ring. On the third day of life, the infant exhibited a bronze-gray coloration, and a direct bilirubin of 1.7 mg/dL was detected. The abdominal ultrasound did not visualize the gallbladder. Clinically, the infant displayed features consistent with Alagille syndrome, including unusual facial appearance, butterfly vertebrae, cardiovascular defects, and cholestasis. The geneticist noted that the mother of the patient also exhibited similar features. Both the infant and the mother were diagnosed with Alagille syndrome, both having the same heterozygous JAG1 gene (NM_000214.2) variant (c.1890_1893del, p.Ile630Metfs*112). We believe that the vascular ring observed in our patient is the first reported instance of a vascular ring associated with Alagille syndrome.

5.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131637

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

6.
Front Pediatr ; 11: 1174174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255571

RESUMO

The impact of placental dysfunction and placental injury on the fetus and newborn infant has become a topic of growing interest in neonatal disease research. However, the use of placental pathology in directing or influencing neonatal clinical management continues to be limited for a wide range of reasons, some of which are historical and thus easily overcome today. In this review, we summarize the most recent literature linking placental function to neonatal outcomes, focusing on clinical placental pathology findings and the most common neonatal diagnoses that have been associated with placental dysfunction. We discuss how recent technological advances in neonatal and perinatal medicine may allow us to make a paradigm shift, in which valuable information provided by the placenta could be used to guide neonatal management more effectively, and to ultimately enhance neonatal care in order to improve our patient outcomes. We propose new avenues of clinical management in which the placenta could serve as a diagnostic tool toward more personalized neonatal intensive care unit management.

7.
J Med Chem ; 66(8): 5802-5819, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37040439

RESUMO

Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.


Assuntos
Antivirais , COVID-19 , Animais , Camundongos , SARS-CoV-2 , Fosfolipídeos
8.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747824

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.

9.
Breastfeed Med ; 17(11): 947-957, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36251466

RESUMO

Rationale: There is little information regarding the allergen content of milk feeds in the preterm population. Previous studies have not performed a broad analysis of the allergenic peptide content and protease activity of milk feeds in this population. Methods: To evaluate feasibility, we initially performed mass spectrometry on 4 human milk (HM) samples (2 term and 2 preterm) from the Mommy's Milk Human Milk Biorepository (HMB) and analyzed the results against the University of Nebraska FASTA database and UniProt for a total of 2,211 protein sequences. We then further analyzed five samples from the Microbiome, Atopy, and Prematurity (MAP) study including peptidomic and protease activity analysis. Results: Each HMB sample had between 806 and 1,007 proteins, with 37-44 nonhuman proteins/sample encompassing 26 plant and animal species. In the preterm MAP samples, 784 digested nonhuman proteins were identified, 30 were nonbovine in origin. Proteins from 23 different species including aeroallergens, food, and contact allergens were identified. Protease activity was highest in HM samples without human milk fortifier and lowest in preterm formula. Conclusions: These findings represent the first preterm milk feed mass spectrometry and protease analysis with identification of known allergenic proteins to food, contact, and aeroallergens. These results raise questions of whether the composition of milk feeds in the neonatal intensive care unit impact the development of atopic disease in the preterm population and whether the complex interaction between allergens, proteases, and other HM components can serve to induce sensitization or tolerance to allergens in infants. Clinical Trial Registration Number: NCT04835935.


Assuntos
Doenças do Prematuro , Recém-Nascido Prematuro , Animais , Feminino , Humanos , Recém-Nascido , Alérgenos/análise , Alérgenos/metabolismo , Aleitamento Materno , Leite Humano/química , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/metabolismo
10.
Commun Biol ; 5(1): 789, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931732

RESUMO

As new variants of SARS-CoV-2 continue to emerge, it is important to assess the cross-neutralizing capabilities of antibodies naturally elicited during wild type SARS-CoV-2 infection. In the present study, we evaluate the activity of nine anti-SARS-CoV-2 monoclonal antibodies (mAbs), previously isolated from convalescent donors infected with the Wuhan-Hu-1 strain, against the SARS-CoV-2 variants of concern (VOC) Alpha, Beta, Gamma, Delta and Omicron. By testing an array of mutated spike receptor binding domain (RBD) proteins, cell-expressed spike proteins from VOCs, and neutralization of SARS-CoV-2 VOCs as pseudoviruses, or as the authentic viruses in culture, we show that mAbs directed against the ACE2 binding site (ACE2bs) are more sensitive to viral evolution compared to anti-RBD non-ACE2bs mAbs, two of which retain their potency against all VOCs tested. At the second part of our study, we reveal the neutralization mechanisms at high molecular resolution of two anti-SARS-CoV-2 neutralizing mAbs by structural characterization. We solve the structures of the Delta-neutralizing ACE2bs mAb TAU-2303 with the SARS-CoV-2 spike trimer and RBD at 4.5 Å and 2.42 Å resolutions, respectively, revealing a similar mode of binding to that between the RBD and ACE2. Furthermore, we provide five additional structures (at resolutions of 4.7 Å, 7.3 Å, 6.4 Å, 3.3 Å, and 6.1 Å) of a second antibody, TAU-2212, complexed with the SARS-CoV-2 spike trimer. TAU-2212 binds an exclusively quaternary epitope, and exhibits a unique, flexible mode of neutralization that involves transitioning between five different conformations, with both arms of the antibody recruited for cross linking intra- and inter-spike RBD subunits. Our study provides additional mechanistic understanding about how antibodies neutralize SARS-CoV-2 and its emerging variants and provides insights on the likelihood of reinfections.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/química , Anticorpos Antivirais , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/química
11.
PLoS Pathog ; 18(7): e1010686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862442

RESUMO

Successful control of the COVID-19 pandemic depends on vaccines that prevent transmission. The full-length Spike protein is highly immunogenic but the majority of antibodies do not target the virus: ACE2 interface. In an effort to affect the quality of the antibody response focusing it to the receptor-binding motif (RBM) we generated a series of conformationally-constrained immunogens by inserting solvent-exposed RBM amino acid residues into hypervariable loops of an immunoglobulin molecule. Priming C57BL/6 mice with plasmid (p)DNA encoding these constructs yielded a rapid memory response to booster immunization with recombinant Spike protein. Immune sera antibodies bound strongly to the purified receptor-binding domain (RBD) and Spike proteins. pDNA primed for a consistent response with antibodies efficient at neutralizing authentic WA1 virus and three variants of concern (VOC), B.1.351, B.1.617.2, and BA.1. We demonstrate that immunogens built on structure selection can be used to influence the quality of the antibody response by focusing it to a conserved site of vulnerability shared between wildtype virus and VOCs, resulting in neutralizing antibodies across variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Pandemias/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia
12.
Neoreviews ; 23(7): e462-e471, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773506

RESUMO

Immune-mediated thrombocytopenia in neonates is caused by the transplacental passage of maternally derived antiplatelet antibodies. The 2 most common causes include neonatal alloimmune thrombocytopenia, which leads to significant thrombocytopenia and risk of intracranial hemorrhage, and autoimmune thrombocytopenia, which is generally less severe. No specific guidelines for prenatal management exist for either disease; however, intravenous immune globulin treatments and systemic steroids for women with at-risk pregnancies can be useful in both diseases. In this review, we discuss the current literature and management strategies for both pregnant women and newborns with immune-mediated thrombocytopenia.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia Neonatal Aloimune , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Recém-Nascido , Gravidez , Púrpura Trombocitopênica Idiopática/terapia , Trombocitopenia Neonatal Aloimune/diagnóstico , Trombocitopenia Neonatal Aloimune/terapia
13.
Sci Rep ; 12(1): 6437, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440708

RESUMO

Preterm infants are at a greater risk for the development of asthma and atopic disease, which can lead to lifelong negative health consequences. This may be due, in part, to alterations that occur in the gut microbiome and metabolome during their stay in the Neonatal Intensive Care Unit (NICU). To explore the differential roles of family history (i.e., predisposition due to maternal asthma diagnosis) and hospital-related environmental and clinical factors that alter microbial exposures early in life, we considered a unique cohort of preterm infants born ≤ 34 weeks gestational age from two local level III NICUs, as part of the MAP (Microbiome, Atopic disease, and Prematurity) Study. From MAP participants, we chose a sub-cohort of infants whose mothers had a history of asthma and matched gestational age and sex to infants of mothers without a history of asthma diagnosis (control). We performed a prospective, paired metagenomic and metabolomic analysis of stool and milk feed samples collected at birth, 2 weeks, and 6 weeks postnatal age. Although there were clinical factors associated with shifts in the diversity and composition of stool-associated bacterial communities, maternal asthma diagnosis did not play an observable role in shaping the infant gut microbiome during the study period. There were significant differences, however, in the metabolite profile between the maternal asthma and control groups at 6 weeks postnatal age. The most notable changes occurred in the linoleic acid spectral network, which plays a role in inflammatory and immune pathways, suggesting early metabolomic changes in the gut of preterm infants born to mothers with a history of asthma. Our pilot study suggests that a history of maternal asthma alters a preterm infants' metabolomic pathways in the gut, as early as the first 6 weeks of life.


Assuntos
Asma , Microbiota , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Metaboloma , Projetos Piloto , Estudos Prospectivos
14.
Res Sq ; 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313591

RESUMO

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/ß. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.

15.
bioRxiv ; 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233578

RESUMO

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/ß. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.

16.
iScience ; 25(2): 103797, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198866

RESUMO

Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation toward a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild-type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification toward lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development.

17.
J Matern Fetal Neonatal Med ; 35(5): 951-957, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32138561

RESUMO

OBJECTIVE: To assess the feasibility of conducting a study comparing nasal continuous positive airway pressure (nCPAP) or heated, humidified, high flow nasal cannula (HHHFNC) on oral feeding in preterm infants. STUDY DESIGN: Randomized controlled pilot study in a level III NICU, of infants' born ≤28°/7 weeks who at 34°/7 weeks post menstrual age (PMA) were dependent on noninvasive ventilation (NIV). Infants were randomized evenly to nCPAP or HHHFNC groups and orally fed on low-flow oxygen. The primary outcomes of enrollment and retention were assessed. RESULTS: We enrolled 40 infants and 12 completed the study in the nCPAP group versus 13 in the HHHFNC group. Using our respiratory and feeding protocols, we showed overall enrollment and retention rates (95%CI) at 0.66 (0.54, 0.77) and 0.63 (0.48, 0.78), respectively. Breastfeeding rates were 82% in the nCPAP group and 76% in the HHHFNC group. Infants in the HHHFNC group reached full feeds 7 days earlier than those in the nCPAP group. CONCLUSIONS: Based on our retention rate, an adequately powered randomized controlled trial can be performed to confirm or refute that HHHFNC is associated with achieving oral feeds earlier. TRIAL REGISTRATION: United States National Library of Medicine (www.clinicaltrials.gov) Identifier: NCT02055339. First posted 2/5/2014.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Síndrome do Desconforto Respiratório do Recém-Nascido , Cânula , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Projetos Piloto
18.
mSystems ; 6(6): e0113621, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726486

RESUMO

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and inform appropriate infection mitigation responses. Research groups have reported detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2-positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over 7 days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be correlated with surface viral load using only one linear regression model per material category. The same experiment was performed with untreated viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods. IMPORTANCE Environmental monitoring is an important tool for public health surveillance, particularly in settings with low rates of diagnostic testing. Time between sampling public environments, such as hospitals or schools, and notifying stakeholders of the results should be minimal, allowing decisions to be made toward containing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental monitoring effort in elementary school and child care settings, has processed >13,000 surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However, consecutive detection events necessitated the present study to establish appropriate response practices around persistent viral signals on classroom surfaces. Other research groups and clinical labs developing environmental monitoring methods may need to establish their own correlation between RT-qPCR results and viral load, but this work provides evidence justifying simplified experimental designs, like reduced testing materials and the use of heat-inactivated viral particles.

19.
Physiology (Bethesda) ; 36(6): 359-366, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704855

RESUMO

Compared with adults, children are less likely infected with SARS-CoV-2 and are often asymptomatic when infected. However, infection in children can lead to severe disease. The pandemic affects the lives of all children, especially those with lower socioeconomic status. This review highlights the physiological impacts of COVID-19 in early life.


Assuntos
COVID-19 , Adulto , Criança , Humanos , Lactente , Pandemias , SARS-CoV-2
20.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407940

RESUMO

Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Apoptose/genética , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Lactente , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Células Vero , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA