Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0032124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426750

RESUMO

Human immunodeficiency virus type 1 typically requires a high density of CD4 for efficient entry as a mechanism to target CD4+ T cells (T-tropic), with CCR5 being used most often as the coreceptor. When target T cells are limiting, the virus can evolve to infect cells with a low density of CD4 such as macrophages (M-tropic). The entry phenotype is known to be encoded in the viral Env protein on the surface of the virus particle. Using data showing a dose response for infectivity based on CD4 surface density, we built a model consistent with T-tropic viruses requiring multiple CD4 molecules to mediate infection, whereas M-tropic viruses can infect cells using a single CD4 receptor molecule interaction. We also found that T-tropic viruses bound to the surface of cells with a low density of CD4 are released more slowly than M-tropic viruses which we modeled to be due to multiple interactions of the T-tropic virus with multiple CD4 molecules to allow the initial stable binding. Finally, we found that some M-tropic Env proteins, as the gp120 subunit, possess an enhanced affinity for CD4 compared with their T-tropic pair, indicating that the evolution of macrophage tropism can be reflected both in the closed Env trimer conformation on the virion surface and, in some cases, also in the open confirmation of gp120 Env. Collectively, these studies reveal differences in the stoichiometry of interaction of T-tropic and M-tropic viruses with CD4 and start to identify the basis of binding differences at the biochemical level. IMPORTANCE: Human immunodeficiency virus type 1 normally targets CD4+ T cells for viral replication. When T cells are limiting, the virus can evolve to infect myeloid cells. The evolutionary step involves a change from requiring a high surface density of CD4 for entry to being able to infect cells with a low density of CD4, as is found on myeloid lineage cells such as macrophage and microglia. Viruses able to infect macrophages efficiently are most often found in the CNS late in the disease course, and such viruses may contribute to neurocognitive impairment. Here, we examine the CD4 binding properties of the viral Env protein to explore these two different entry phenotypes.


Assuntos
HIV-1 , Humanos , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos , Produtos do Gene env/metabolismo , HIV-1/fisiologia , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Proteínas do Envelope Viral/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana
2.
SoftwareX ; 232023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37799564

RESUMO

Blood clotting involves the coupled processes of platelet aggregation and coagulation. Simulating clotting under flow in complex geometries is challenging due to multiple temporal and spatial scales and high computational cost. clotFoam is an open-source software developed in OpenFOAM that employs a continuum model of platelet advection, diffusion, and aggregation in a dynamic fluid environment and a simplified coagulation model with proteins that advect, diffuse, and react within the fluid and with wall-bound species through reactive boundary conditions. Our framework provides the foundation on which one can build more complex models and perform reliable simulations in almost any computational domain.

3.
ArXiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37131873

RESUMO

Blood clotting involves the coupled processes of platelet aggregation and coagulation. Simulating clotting under flow in complex geometries is challenging due to multiple temporal and spatial scales and high computational cost. clotFoam is an open-source software developed in OpenFOAM that employs a continuum model of platelet advection, diffusion, and aggregation in a dynamic fluid environment and a simplified coagulation model with proteins that advect, diffuse, and react within the fluid and with wall-bound species through reactive boundary conditions. Our framework provides the foundation on which one can build more complex models and perform reliable simulations in almost any computational domain.

4.
Biophys J ; 122(1): 99-113, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36403087

RESUMO

Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Tissue factor pathway inhibitor (TFPI) is one such inhibitor, well known for its inhibitory action on the active enzyme complex comprising tissue factor (TF) and activated clotting factor VII. This complex forms when TF embedded in the blood vessel wall is exposed by injury and initiates coagulation. A different role for TFPI, independent of TF:VIIa, has recently been discovered whereby TFPI binds a partially cleaved form of clotting factor V (FV-h) and impedes thrombin generation on activated platelet surfaces. We hypothesized that this TF-independent inhibitory mechanism on platelet surfaces would be a more effective platform for TFPI than the TF-dependent one. We examined the effects of this mechanism on thrombin generation by including the relevant biochemical reactions into our previously validated mathematical model. Additionally, we included the ability of TFPI to bind directly to and inhibit platelet-bound FXa. The new model was sensitive to TFPI levels and, under some conditions, TFPI could completely shut down thrombin generation. This sensitivity was due entirely to the surface-mediated inhibitory reactions. The addition of the new TFPI reactions increased the threshold level of TF needed to elicit a strong thrombin response under flow, but the concentration of thrombin achieved, if there was a response, was unchanged. Interestingly, we found that direct binding of TFPI to platelet-bound FXa had a greater anticoagulant effect than did TFPI binding to FV-h alone, but that the greatest effects occurred if both reactions were at play. The model includes activated platelets' release of FV species, and we explored the impact of varying the FV/FV-h composition of the releasate. We found that reducing the zymogen FV fraction of this pool, and thus increasing the fraction that is FV-h, led to acceleration of thrombin generation.


Assuntos
Plaquetas , Trombina , Trombina/metabolismo , Plaquetas/metabolismo , Coagulação Sanguínea/fisiologia , Tromboplastina/metabolismo , Fator V/metabolismo , Fator VIIa
5.
Biophys J ; 122(1): 230-240, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36325617

RESUMO

Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Antithrombin (AT) is one such inhibitor that impedes coagulation by targeting and inactivating several key coagulation enzymes. The effect of AT is greatly enhanced in the presence of heparin, a common anticoagulant drug. When heparin binds to AT, it either bridges with the target enzyme or induces allosteric changes in AT leading to more favorable binding with the target enzyme. AT inhibition of fluid-phase enzymes caused little suppression of thrombin generation in our previous mathematical models of blood coagulation under flow. This is because in that model, flow itself was a greater inhibitor of the fluid-phase enzymes than AT. From clinical observations, it is clear that AT and heparin should have strong inhibitory effects on thrombin generation, and thus we hypothesized that AT could be inhibiting enzymes bound to activated platelet surfaces that are not subject to being washed away by flow. We extended our mathematical model to include the relevant reactions of AT inhibition at the activated platelet surfaces as well as those for unfractionated heparin and a low molecular weight heparin. Our results show that AT alone is only an effective inhibitor at low tissue factor densities, but in the presence of heparin, it can greatly alter, and in some cases shut down, thrombin generation. Additionally, we studied each target enzyme separately and found that inactivation of no single enzyme could substantially suppress thrombin generation.


Assuntos
Antitrombinas , Heparina , Antitrombinas/farmacologia , Antitrombinas/metabolismo , Heparina/farmacologia , Heparina/química , Trombina/metabolismo , Antitrombina III/metabolismo , Antitrombina III/farmacologia , Anticoagulantes/farmacologia , Coagulação Sanguínea/fisiologia
6.
PLoS Comput Biol ; 18(9): e1010414, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36107837

RESUMO

Thrombin is an enzyme produced during blood coagulation that is crucial to the formation of a stable clot. Thrombin cleaves soluble fibrinogen into fibrin, which polymerizes and forms an insoluble, stabilizing gel around the growing clot. A small fraction of circulating fibrinogen is the variant γA/γ', which has been associated with high-affinity thrombin binding and implicated as a risk factor for myocardial infarctions, deep vein thrombosis, and coronary artery disease. Thrombin is also known to be strongly sequestered by polymerized fibrin for extended periods of time in a way that is partially regulated by γA/γ'. However, the role of γA/γ'-thrombin interactions during fibrin polymerization is not fully understood. Here, we present a mathematical model of fibrin polymerization that considered the interactions between thrombin, fibrinogen, and fibrin, including those with γA/γ'. In our model, bivalent thrombin-fibrin binding greatly increased thrombin residency times and allowed for thrombin-trapping during fibrin polymerization. Results from the model showed that early in fibrin polymerization, γ' binding to thrombin served to localize the thrombin to the fibrin(ogen), which effectively enhanced the enzymatic conversion of fibrinogen to fibrin. When all the fibrin was fully generated, however, the fibrin-thrombin binding persisted but the effect of fibrin on thrombin switched quickly to serve as a sink, essentially removing all free thrombin from the system. This dual role for γ'-thrombin binding during polymerization led to a paradoxical decrease in trapped thrombin as the amount of γ' was increased. The model highlighted biochemical and biophysical roles for fibrin-thrombin interactions during polymerization and agreed well with experimental observations.


Assuntos
Fibrina , Trombina , Fibrina/metabolismo , Fibrinogênio/metabolismo , Modelos Teóricos , Polimerização , Trombina/metabolismo
7.
Res Pract Thromb Haemost ; 6(5): e12747, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814801

RESUMO

The ISTH London 2022 Congress is the first held (mostly) face-to-face again since the COVID-19 pandemic took the world by surprise in 2020. For 2 years we met virtually, but this year's in-person format will allow the ever-so-important and quintessential creativity and networking to flow again. What a pleasure and joy to be able to see everyone! Importantly, all conference proceedings are also streamed (and available recorded) online for those unable to travel on this occasion. This ensures no one misses out. The 2022 scientific program highlights new developments in hemophilia and its treatment, acquired and other inherited bleeding disorders, thromboinflammation, platelets and coagulation, clot structure and composition, fibrinolysis, vascular biology, venous thromboembolism, women's health, arterial thrombosis, pediatrics, COVID-related thrombosis, vaccine-induced thrombocytopenia with thrombosis, and omics and diagnostics. These areas are elegantly reviewed in this Illustrated Review article. The Illustrated Review is a highlight of the ISTH Congress. The format lends itself very well to explaining the science, and the collection of beautiful graphical summaries of recent developments in the field are stunning and self-explanatory. This clever and effective way to communicate research is revolutionary and different from traditional formats. We hope you enjoy this article and will be inspired by its content to generate new research ideas.

8.
Semin Thromb Hemost ; 47(2): 129-138, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33657623

RESUMO

Computational models of various facets of hemostasis and thrombosis have increased substantially in the last decade. These models have the potential to make predictions that can uncover new mechanisms within the complex dynamics of thrombus formation. However, these predictions are only as good as the data and assumptions they are built upon, and therefore model building requires intimate coupling with experiments. The objective of this article is to guide the reader through how a computational model is built and how it can inform and be refined by experiments. This is accomplished by answering six questions facing the model builder: (1) Why make a model? (2) What kind of model should be built? (3) How is the model built? (4) Is the model a "good" model? (5) Do we believe the model? (6) Is the model useful? These questions are answered in the context of a model of thrombus formation that has been successfully applied to understanding the interplay between blood flow, platelet deposition, and coagulation and in identifying potential modifiers of thrombin generation in hemophilia A.


Assuntos
Hemostasia/imunologia , Humanos , Modelos Moleculares
9.
Arterioscler Thromb Vasc Biol ; 41(1): 79-86, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115272

RESUMO

Bleeding frequency and severity within clinical categories of hemophilia A are highly variable and the origin of this variation is unknown. Solving this mystery in coagulation requires the generation and analysis of large data sets comprised of experimental outputs or patient samples, both of which are subject to limited availability. In this review, we describe how a computationally driven approach bypasses such limitations by generating large synthetic patient data sets. These data sets were created with a mechanistic mathematical model, by varying the model inputs, clotting factor, and inhibitor concentrations, within normal physiological ranges. Specific mathematical metrics were chosen from the model output, used as a surrogate measure for bleeding severity, and statistically analyzed for further exploration and hypothesis generation. We highlight results from our recent study that employed this computationally driven approach to identify FV (factor V) as a key modifier of thrombin generation in mild to moderate hemophilia A, which was confirmed with complementary experimental assays. The mathematical model was used further to propose a potential mechanism for these observations whereby thrombin generation is rescued in FVIII-deficient plasma due to reduced substrate competition between FV and FVIII for FXa (activated factor X).


Assuntos
Coagulação Sanguínea , Simulação por Computador , Fator V/metabolismo , Hemofilia A/sangue , Modelos Biológicos , Trombina/metabolismo , Animais , Ligação Competitiva , Conjuntos de Dados como Assunto , Fator VIII/metabolismo , Fator Xa/metabolismo , Hemofilia A/diagnóstico , Humanos , Aprendizado de Máquina , Ligação Proteica
10.
Phys Rev E ; 102(3-1): 033114, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075899

RESUMO

Flagella are hairlike appendages attached to microorganisms that allow the organisms to traverse their fluid environment. The algae Volvox are spherical swimmers with thousands of individual flagella on their surface, and their coordination is not fully understood. In this work, a previously developed minimal model of flagella synchronization is extended to the outer surface of a sphere submerged in a fluid. Each beating flagellum tip is modeled as a small sphere, elastically bound to a circular orbit just above the spherical surface and a regularized image system for Stokes flow outside of a sphere is used to enforce the no-slip condition. Biologically relevant distributions of rotors results in a rapidly developing and robust symplectic metachronal wave traveling from the anterior to the posterior of the spherical Volvox body.


Assuntos
Flagelos/metabolismo , Hidrodinâmica , Modelos Biológicos , Volvox/citologia , Propriedades de Superfície
11.
Multiscale Model Simul ; 18(4): 1489-1524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33867873

RESUMO

We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODEs) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical adenosine diphosphate hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool of primary and secondary hemostasis.

12.
J Thromb Haemost ; 18(2): 306-317, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31562694

RESUMO

BACKGROUND: The variability in bleeding patterns among individuals with hemophilia A, who have similar factor VIII (FVIII) levels, is significant and the origins are unknown. OBJECTIVE: To use a previously validated mathematical model of flow-mediated coagulation as a screening tool to identify parameters that are most likely to enhance thrombin generation in the context of FVIII deficiency. METHODS: We performed a global sensitivity analysis (GSA) on our mathematical model to identify potential modifiers of thrombin generation. Candidates from the GSA were confirmed by calibrated automated thrombography (CAT) and flow assays on collagen-tissue factor (TF) surfaces at a shear rate of 100 per second. RESULTS: Simulations identified low-normal factor V (FV) (50%) as the strongest modifier, with additional thrombin enhancement when combined with high-normal prothrombin (150%). Low-normal FV levels or partial FV inhibition (60% activity) augmented thrombin generation in FVIII-inhibited or FVIII-deficient plasma in CAT. Partial FV inhibition (60%) boosted fibrin deposition in flow assays performed with whole blood from individuals with mild and moderate FVIII deficiencies. These effects were amplified by high-normal prothrombin levels in both experimental models. CONCLUSIONS: These results show that low-normal FV levels can enhance thrombin generation in hemophilia A. Further explorations with the mathematical model suggest a potential mechanism: lowering FV reduces competition between FV and FVIII for factor Xa (FXa) on activated platelet surfaces (APS), which enhances FVIII activation and rescues thrombin generation in FVIII-deficient blood.


Assuntos
Hemofilia A , Coagulação Sanguínea , Fator V , Fator VIII , Humanos , Modelos Teóricos , Trombina
13.
Biophys J ; 117(8): 1442-1455, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586524

RESUMO

Thrombin is an enzyme that plays many important roles in the blood clotting process; it activates platelets, cleaves coagulation proteins within feedback loops, and cleaves fibrinogen into fibrin, which polymerizes into fibers to form a stabilizing gel matrix in and around growing clots. Thrombin also binds to the formed fibrin matrix, but this interaction is not well understood. Thrombin-fibrin binding is often described as two independent, single-step binding events, one high-affinity and one low-affinity. However, kinetic schemes describing these single-step binding events do not explain experimentally-observed residency times of fibrin-bound thrombin. In this work, we study a bivalent, sequential-step binding scheme as an alternative to the high-affinity event and, in addition to the low-affinity one. We developed mathematical models for the single- and sequential-step schemes consisting of reaction-diffusion equations to compare to each other and to experimental data. We then used Bayesian inference, in the form of Markov chain Monte Carlo, to learn model parameter distributions from previously published experimental data. For the model to best fit the data, we made an additional assumption that thrombin was irreversibly sequestered; we hypothesized that this could be due to thrombin becoming physically trapped within fibrin fibers as they formed. We further estimated that ∼30% of thrombin in the experiments to which we compare our model output became physically trapped. The notion of physically trapped thrombin may provide new insights into conflicting observations regarding the speed of fibrinolysis. Finally, we show that our new model can be used to further probe scenarios dealing with thrombin allostery.


Assuntos
Fibrina/química , Modelos Teóricos , Trombina/química , Probabilidade , Ligação Proteica
14.
Int J Numer Method Biomed Eng ; 35(9): e3212, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31117155

RESUMO

Upon injury to a blood vessel, flowing platelets will aggregate at the injury site, forming a plug to prevent blood loss. Through a complex system of biochemical reactions, a stabilizing mesh forms around the platelet aggregate forming a blood clot that further seals the injury. Computational models of clot formation have been developed to a study intravascular thrombosis, where a vessel injury does not cause blood leakage outside the blood vessel but blocks blood flow. To model scenarios in which blood leaks from a main vessel out into the extravascular space, new computational tools need to be developed to handle the complex geometries that represent the injury. We have previously modeled intravascular clot formation under flow using a continuum approach wherein the transport of platelet densities into some spatial location is limited by the platelet fraction that already reside in that location, i.e., the densities satisfy a maximum packing constraint through the use of a hindered transport coefficient. To extend this notion to extravascular injury geometries, we have modified a finite element method flux-corrected transport (FEM-FCT) scheme by prelimiting antidiffusive nodal fluxes. We show that our modified scheme, under a variety of test problems, including mesh refinement, structured vs unstructured meshes, and for a range of reaction rates, produces numerical results that satisfy a maximum platelet-density packing constraint.


Assuntos
Algoritmos , Modelos Cardiovasculares , Agregação Plaquetária/fisiologia , Engenharia Biomédica , Coagulação Sanguínea/fisiologia , Simulação por Computador , Análise de Elementos Finitos , Hemorreologia/fisiologia , Hemostasia/fisiologia , Humanos , Trombose/sangue , Lesões do Sistema Vascular/sangue
15.
Anal Biochem ; 580: 62-71, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091429

RESUMO

Chromogenic substrates (CS) are synthetic substrates used to monitor the activity of a target enzyme. It has been reported that some CSs display competitive product inhibition with their target enzyme. Thus, in assays where enzyme activity is continuously monitored over long periods of time, the product inhibition may significantly interfere with the reactions being monitored. Despite this knowledge, it is rare for CSs to be directly incorporated into mathematical models that simulate these assays. This devalues the predictive power of the models. In this study, we examined the interactions between a single enzyme, coagulation factor Xa, and its chromogenic substrate. We developed, and experimentally validated, a mathematical model of a chromogenic assay for factor Xa that explicitly included product inhibition from the CS. We employed Bayesian inference, in the form of Markov-Chain Monte Carlo, to estimate the strength of the product inhibition and other sources of uncertainty such as pipetting error and kinetic rate constants. Our model, together with carefully calibrated biochemistry experiments, allowed for full characterization of the strength and impact of product inhibition in the assay. The effect of CS product inhibition in more complex reaction mixtures was further explored using mathematical models.


Assuntos
Compostos Cromogênicos/química , Fator Xa/química , Modelos Teóricos
16.
PLoS One ; 13(7): e0200917, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048479

RESUMO

The hemostatic response involves blood coagulation and platelet aggregation to stop blood loss from an injured blood vessel. The complexity of these processes make it difficult to intuit the overall hemostatic response without quantitative methods. Mathematical models aim to address this challenge but are often accompanied by numerous parameters choices and thus need to be analyzed for sensitivity to such choices. Here we use local and global sensitivity analyses to study a model of coagulation and platelet deposition under flow. To relate with clinical assays, we measured the sensitivity of three specific thrombin metrics: lag time, maximum relative rate of generation, and final concentration after 20 minutes. In addition, we varied parameters of three different classes: plasma protein levels, kinetic rate constants, and platelet characteristics. In terms of an overall ranking of the model's sensitivities, we found that the local and global methods provided similar information. Our local analysis, in agreement with previous findings, shows that varying parameters within 50-150% of baseline values, in a one-at-a-time (OAT) fashion, always leads to significant thrombin generation in 20 minutes. Our global analysis gave a different and novel result highlighting groups of parameters, still varying within the normal 50-150%, that produced little or no thrombin in 20 minutes. Variations in either plasma levels or platelet characteristics, using either OAT or simultaneous variations, always led to strong thrombin production and overall, relatively low output variance. Simultaneous variation in kinetics rate constants or in a subset of all three parameter classes led to the highest overall output variance, incorporating instances with little to no thrombin production. The global analysis revealed multiple parameter interactions in the lag time and final concentration leading to relatively high variance; high variance was also observed in the thrombin generation rate, but parameters attributed to that variance acted independently and additively.


Assuntos
Coagulação Sanguínea , Plaquetas/fisiologia , Hemostasia , Modelos Biológicos , Cinética , Agregação Plaquetária , Incerteza
17.
Phys Rev E ; 97(2-1): 023101, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548218

RESUMO

Here, we study the fluid dynamics of a pair of rigid helices rotating at a constant velocity, tethered at their bases, in a viscous fluid. Our computations use a regularized Stokeslet framework, both with and without a bounding plane, so we are able to discern precisely what flow features are unaccounted for in studies that ignore the surface from which the helices emanate. We examine how the spacing and phase difference between identical rotating helices affects their pumping ability, axial thrust, and power requirements. We also find that optimal mixing of the fluid around two helices is achieved when they rotate in opposite phase, and that the mixing is enhanced as the distance between the helices decreases.

18.
Arterioscler Thromb Vasc Biol ; 36(12): 2334-2345, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789475

RESUMO

OBJECTIVE: Recent evidence suggests involvement of coagulation factor XIa (FXIa) in thrombotic event development. This study was conducted to explore possible synergies between tissue factor (TF) and exogenous FXIa (E-FXIa) in thrombin generation. APPROACH AND RESULTS: In thrombin generation assays, for increasing concentrations of E-FXIa with low, but not with high TF concentrations, peak thrombin significantly increased whereas lag time and time to peak significantly decreased. Similar dependencies of lag times and rates of thrombin generation were found in mathematical model simulations. In both in vitro and in silico experiments that included E-FXIa, thrombin bursts were seen for TF levels much lower than those required without E-FXIa. For in silico thrombin bursts initiated by the synergistic action of TF and E-FXIa, the mechanisms leading to the burst differed substantially from those for bursts initiated by high TF alone. For the synergistic case, sustained activation of platelet-bound FIX by E-FXIa, along with the feedback-enhanced activation of platelet-bound FVIIIa and FXa, was needed to elicit a thrombin burst. Furthermore, the initiation of thrombin bursts by high TF levels relied on different platelet FIX/FIXa binding sites than those involved in bursts initiated by low TF levels with E-FXIa. CONCLUSIONS: Low concentrations of TF and exogenous FXIa, each too low to elicit a burst in thrombin production alone, act synergistically when in combination to cause substantial thrombin production. The observation about FIX/FIXa binding sites may have therapeutic implications.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Fator Xa/metabolismo , Ativação Plaquetária , Trombina/metabolismo , Tromboplastina/metabolismo , Sítios de Ligação , Testes de Coagulação Sanguínea , Simulação por Computador , Cisteína Endopeptidases/metabolismo , Fator VIIIa/metabolismo , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Transdução de Sinais , Trombose/sangue , Fatores de Tempo
19.
Phys Rev E ; 93: 043108, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176391

RESUMO

Many microorganisms swim in a highly heterogeneous environment with obstacles such as fibers or polymers. To better understand how this environment affects microorganism swimming, we study propulsion of a cylinder or filament in a fluid with a sparse, stationary network of obstructions modeled by the Brinkman equation. The mathematical analysis of swimming speeds is investigated by studying an infinite-length cylinder propagating lateral or spiral displacement waves. For fixed bending kinematics, we find that swimming speeds are enhanced due to the added resistance from the fibers. In addition, we examine the work and the torque exerted on the cylinder in relation to the resistance. The solutions for the torque, swimming speed, and work of an infinite-length cylinder in a Stokesian fluid are recovered as the resistance is reduced to zero. Finally, we compare the asymptotic solutions with numerical results for the Brinkman flow with regularized forces. The swimming speed of a finite-length filament decreases as its length decreases and planar bending induces an angular velocity that increases linearly with added resistance. The comparisons between the asymptotic analysis and computation give insight on the effect of the length of the filament, the permeability, and the thickness of the cylinder in terms of the overall performance of planar and helical swimmers.

20.
Thromb Res ; 133 Suppl 1: S12-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24759131

RESUMO

In the last decade numerous mathematical models have been formulated to investigate specific components of the clotting system such as the tissue factor pathway of coagulation. Sophisticated, multiscale models were developed to better understand the interplay of flow-mediated transport, platelet deposition, and coagulation kinetics, and their overall effect on thrombus formation. Promotion of thrombus growth is partially due to the well-known pro-coagulant roles of platelets like the surface-dependent coagulation reactions. Iterations of theoretical model predictions and experiment have helped to elucidate anticoagulant roles of platelets as well. These roles include paving over the subendothelium and hindering transport of substrates to and from enzyme complexes which can strongly affect thrombus formation. In this review, we give a brief overview of theoretical models of thrombus formation under flow and some of the experiments that motivated them and were motivated by them.


Assuntos
Coagulação Sanguínea , Modelos Biológicos , Trombose/sangue , Animais , Hemorreologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA