Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1130182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876006

RESUMO

Chimeric antigen receptors (CARs) have demonstrated remarkable promise in human oncology over the past two decades, yet similar strategies in veterinary medicine are still in development. CARs are synthetically engineered proteins comprised of a specific antigen-binding single chain variable fragment (ScFv) fused to the signaling domain of a T cell receptor and co-receptors. Patient T cells engineered to express a CAR are directed to recognize and kill target cells, most commonly hematological malignancies. The U.S Food and Drug Administration (FDA) has approved multiple human CAR T therapies, but translation of these therapies into veterinary medicine faces many challenges. In this review, we discuss considerations for veterinary use including CAR design and cell carrier choice, and discuss the future promise of translating CAR therapy into veterinary oncology.

2.
PLoS One ; 16(12): e0260756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914760

RESUMO

Macrophages are key players in the development of atherosclerosis: they scavenge lipid, transform into foam cells, and produce proinflammatory mediators. At the same time, the arterial wall undergoes profound changes in its mechanical properties. We recently showed that macrophage morphology and proinflammatory potential are regulated by the linear stiffness of the growth surface. Here we asked whether linear stiffness also regulates lipid uptake by macrophages. We cultured murine bone marrow-derived macrophages (BMMs) on polyacrylamide gels modeling stiffness of healthy (1kPa) and diseased (10-150kPa) blood vessels. In unprimed BMMs, increased linear stiffness increased uptake of oxidized (oxLDL) and acetylated (acLDL) low density lipoproteins and generation of reactive oxygen species, but did not alter phagocytosis of bacteria or silica particles. Macrophages adapted to stiff growth surfaces had increased mRNA and protein expression of two key lipoprotein receptors: CD36 and scavenger receptor b1. Regulation of the lipoprotein receptor, lectin-like receptor for ox-LDL, was more complex: mRNA expression decreased but surface protein expression increased with increased stiffness. Focal adhesion kinase was required for maximal uptake of oxLDL, but not of acLDL. Uptake of oxLDL and acLDL was independent of rho-associated coiled coil kinase. Through pharmacologic inhibition and genetic deletion, we found that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, plays an inhibitory role in the uptake of acLDL, but not oxLDL. Together, these results implicate mechanical signaling in the uptake of acLDL and oxLDL, opening up the possibility of new pharmacologic targets to modulate lipid uptake by macrophages in vivo.


Assuntos
Lipoproteínas LDL/metabolismo , Macrófagos/patologia , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Transporte Biológico , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propriedades de Superfície
4.
Sci Adv ; 5(3): eaav9788, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944865

RESUMO

Biomaterials-based nanovaccines, such as those made of poly(lactic-co-glycolic acid) (PLGA), can induce stronger immunity than soluble antigens in healthy wild-type mouse models. However, whether metabolic syndrome can influence the immunological responses of nanovaccines remains poorly understood. Here, we first show that alteration in the sensing of the gut microbiome through Toll-like receptor 5 (TLR5) and the resulting metabolic syndrome in TLR5 -/- mice diminish the germinal center immune response induced by PLGA nanovaccines. The PLGA nanovaccines, unexpectedly, further changed gut microbiota. By chronically treating mice with antibiotics, we show that disrupting gut microbiome leads to poor vaccine response in an obesity-independent manner. We next demonstrate that the low immune response can be rescued by an immunomodulatory Pyr-pHEMA nanogel vaccine, which functions through TLR2 stimulation, enhanced trafficking, and induced stronger germinal center response than alum-supplemented PLGA nanovaccines. The study highlights the potential for immunomodulation under gut-mediated metabolic syndrome conditions using advanced nanomaterials.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Síndrome Metabólica/prevenção & controle , Nanogéis , Polietilenoglicóis , Polietilenoimina , Vacinas/administração & dosagem , Análise de Variância , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Materiais Biocompatíveis/administração & dosagem , Microbioma Gastrointestinal/imunologia , Imunidade/imunologia , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Síndrome Metabólica/imunologia , Camundongos Knockout , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia , Receptor 5 Toll-Like/metabolismo , Vacinas/imunologia
5.
Br J Cancer ; 120(2): 207-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518816

RESUMO

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Assuntos
Alarminas/genética , Carcinoma Epitelial do Ovário/genética , DNA Mitocondrial/genética , Armadilhas Extracelulares/genética , Idoso , Ascite/genética , Ascite/patologia , Plaquetas/metabolismo , Carcinoma Epitelial do Ovário/patologia , Armadilhas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Elastase de Leucócito/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Neutrófilos/metabolismo , Neutrófilos/patologia , Intervalo Livre de Progressão , Microambiente Tumoral/genética
6.
Bone Marrow Transplant ; 53(12): 1508-1517, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29795424

RESUMO

Successful and sustained CD4+ T-cell reconstitution is associated with increased survival after hematopoietic cell transplantation (HCT), but opportunistic infections may adversely affect the time and extent of immune reconstitution. Human herpesvirus 6B (HHV-6B) efficiently infects CD4+ T cells and utilizes as a receptor CD134 (OX40), a member of the TNF superfamily that antagonizes regulatory T-cell (Treg) activity. Reactivation of HHV-6B has been associated with aberrant immune reconstitution and acute graft-versus-host disease (aGVHD) after HCT. Given that Treg counts are negatively correlated with aGVHD severity, we postulate that one mechanism for the poor CD4+ T-cell reconstitution observed shortly after transplant may be HHV-6B infection and depletion of peripheral (extra-thymic) CD4+ T cells, including a subpopulation of Treg cells. In turn, this may trigger a series of adverse events resulting in poor clinical outcomes such as severe aGVHD. In addition, recent evidence has linked HHV-6B reactivation with aberrant CD4+ T-cell reconstitution late after transplantation, which may be mediated by a different mechanism, possibly related to central (thymic) suppression of T-cell reconstitution. These observations suggest that aggressive management of HHV-6B reactivation in transplant patients may facilitate CD4+ T-cell reconstitution and improve the quality of life and survival of HCT patients.


Assuntos
Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 6/patogenicidade , Linfócitos T Reguladores/metabolismo , Condicionamento Pré-Transplante/efeitos adversos , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Qualidade de Vida , Condicionamento Pré-Transplante/métodos
7.
Int Immunol ; 30(6): 267-278, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29800294

RESUMO

Macrophages participate in immunity, tissue repair and tissue homeostasis. Activation of Toll-like receptors (TLRs) by conserved exogenous or endogenous structures initiates signaling cascades that result in the release of cytokines such as tumor necrosis factor α (TNFα). Extracellular substrate stiffness is known to regulate functions of non-immune cells through a process called mechanotransduction, yet less is known about how physical cues affect macrophage function or TLR signaling. To investigate this question, we cultured murine primary bone marrow-derived macrophages (BMMs) and RAW264.7 cells on fibronectin-coated polyacrylamide (PA) gels of defined stiffnesses (1, 20 and 150 kPa) that approximate the physical properties of physiologic tissues. BMMs on all gels were smaller and more circular than those on rigid glass. Macrophages on intermediate stiffness 20 kPa PA gels were slightly larger and less circular than those on either 1 or 150 kPa. Secretion of the pro-inflammatory cytokine, TNFα, in response to stimulation of TLR4 and TLR9 was increased in macrophages grown on soft gels versus more rigid gels, particularly for BMMs. Inhibition of the rho-associated coiled-coil kinase 1/2 (ROCK1/2), key mediators in cell contractility and mechanotransduction, enhanced release of TNFα in response to stimulation of TLR4. ROCK1/2 inhibition enhanced phosphorylation of the TLR downstream signaling molecules, p38, ERK1/2 and NFκB. Our data indicate that physical cues from the extracellular environment regulate macrophage morphology and TLR signaling. These findings have important implications in the regulation of macrophage function in diseased tissues and offer a novel pharmacological target for the manipulation of macrophage function in vivo.


Assuntos
Macrófagos/enzimologia , Macrófagos/imunologia , Mecanotransdução Celular/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Quinases Associadas a rho/metabolismo , Resinas Acrílicas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
8.
J Biomed Mater Res A ; 105(8): 2109-2118, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28263432

RESUMO

All biomaterials, including biologic scaffolds composed of extracellular matrix (ECM), elicit a host immune response when implanted. The type and intensity of this response depends in part upon the thoroughness of decellularization and removal of cell debris from the source tissue. Proinflammatory responses have been associated with negative downstream remodeling events including scar tissue formation, encapsulation, and seroma formation. The relative effects of specific cellular components upon the inflammatory response are not known. The objective of the present study was to determine the effect of different cell remnants that may be present in ECM scaffold materials upon the host innate immune response, both in vitro and in vivo. Collagen scaffolds were supplemented with one of three different concentrations of DNA, mitochondria, or cell membranes. Murine macrophages were exposed to the various supplemented scaffolds and the effect upon macrophage phenotype was evaluated. In vivo studies were performed using an abdominal wall defect model in the rat to evaluate the effect of the scaffolds upon the macrophage response. Murine macrophages exposed in vitro to scaffolds supplemented with DNA, mitochondria, and cell membranes showed increased expression of proinflammatory M1 marker iNOS and no expression of the proremodeling M2 marker Fizz1 regardless of supplementation concentration. A dose-dependent response was observed in the rat model for collagen scaffolds supplemented with cell remnants. DNA, mitochondria, and cell membrane remnants in collagen scaffolds promote a proinflammatory M1 macrophage phenotype in vivo and in vitro. These results reinforce the importance of a thorough decellularization process for ECM biologic scaffold materials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2109-2118, 2017.


Assuntos
Matriz Extracelular/química , Matriz Extracelular/imunologia , Imunidade Inata , Macrófagos/imunologia , Alicerces Teciduais/efeitos adversos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Células Cultivadas , Colágeno/efeitos adversos , Colágeno/química , Colágeno/imunologia , DNA/efeitos adversos , DNA/química , DNA/imunologia , Inflamação/etiologia , Inflamação/imunologia , Macrófagos/citologia , Teste de Materiais , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Mitocôndrias/imunologia , Engenharia Tecidual
9.
Mol Ther ; 25(4): 989-1002, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28215994

RESUMO

Recombinant, Escherichia coli-derived outer membrane vesicles (rOMVs), which display heterologous protein subunits, have potential as a vaccine adjuvant platform. One drawback to rOMVs is their lipopolysaccharide (LPS) content, limiting their translatability to the clinic due to potential adverse effects. Here, we explore a unique rOMV construct with structurally remodeled lipids containing only the lipid IVa portion of LPS, which does not stimulate human TLR4. The rOMVs are derived from a genetically engineered B strain of E. coli, ClearColi, which produces lipid IVa, and which was further engineered in our laboratory to hypervesiculate and make rOMVs. We report that rOMVs derived from this lipid IVa strain have substantially attenuated pyrogenicity yet retain high levels of immunogenicity, promote dendritic cell maturation, and generate a balanced Th1/Th2 humoral response. Additionally, an influenza A virus matrix 2 protein-based antigen displayed on these rOMVs resulted in 100% survival against a lethal challenge with two influenza A virus strains (H1N1 and H3N2) in mice with different genetic backgrounds (BALB/c, C57BL/6, and DBA/2J). Additionally, a two-log reduction of lung viral titer was achieved in a ferret model of influenza infection with human pandemic H1N1. The rOMVs reported herein represent a potentially safe and simple subunit vaccine delivery platform.


Assuntos
Escherichia coli/imunologia , Vesículas Extracelulares/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Escherichia coli/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
10.
Semin Immunol ; 29: 41-48, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28214177

RESUMO

Tissue regeneration and repair require a highly complex and orchestrated series of events that require inflammation, but can be compromised when inflammation is excessive or becomes chronic. Macrophages are one of the first cells to contact and respond to implanted materials, and mediate the inflammatory response. The series of events following macrophage association with biomaterials has been well-studied. Dendritic cells (DCs) also directly interact with biomaterials, are critical for specific immune responses, and can be activated in response to interactions with biomaterials. Yet, much less is known about the responses by DCs. This review discusses what we know about DC response to biomaterials, the underlying mechanisms involved, and how DCs can be influenced by the macrophage response to biomaterials. Lastly, I will discuss how biomaterials can be manipulated to enhance or suppress DC function to promote a specific desirable immune response - a major goal for implantable biologically active therapeutics.


Assuntos
Materiais Biocompatíveis/metabolismo , Células Dendríticas/imunologia , Macrófagos/imunologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Humanos , Imunidade Celular , Imunomodulação , Medicina Regenerativa
11.
J Immunol ; 197(4): 1343-52, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27421483

RESUMO

TLR9 is an innate immune receptor important for recognizing DNA of host and foreign origin. A mechanism proposed to prevent excessive response to host DNA is the requirement for proteolytic cleavage of TLR9 in endosomes to generate a mature form of the receptor (TLR9(471-1032)). We previously described another cleavage event in the juxtamembrane region of the ectodomain that generated a dominant-negative form of TLR9. Thus, there are at least two independent cleavage events that regulate TLR9. In this study, we investigated whether an N-terminal fragment of TLR9 could be responsible for regulation of the mature or negative-regulatory form. We show that TLR9(471-1032), corresponding to the proteolytically cleaved form, does not function on its own. Furthermore, activity is not rescued by coexpression of the N-terminal fragment (TLR9(1-440)), inclusion of the hinge region (TLR9(441-1032)), or overexpression of UNC93B1, the last of which is critical for trafficking and cleavage of TLR9. TLR9(1-440) coimmunoprecipitates with full-length TLR9 and TLR9(471-1032) but does not rescue the native glycosylation pattern; thus, inappropriate trafficking likely explains why TLR9(471-1032) is nonfunctional. Lastly, we show that TLR9(471-1032) is also a dominant-negative regulator of TLR9 signaling. Together, these data provide a new perspective on the complexity of TLR9 regulation by proteolytic cleavage and offer potential ways to inhibit activity through this receptor, which may dampen autoimmune inflammation.


Assuntos
Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunoprecipitação , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteólise
12.
J Leukoc Biol ; 100(5): 927-941, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27343013

RESUMO

TLRs play a critical role in the detection of microbes and endogenous "alarmins" to initiate host defense, yet they can also contribute to the development and progression of inflammatory and autoimmune diseases. To avoid pathogenic inflammation, TLR signaling is subject to multilayer regulatory control mechanisms, including cooperation with coreceptors, post-translational modifications, cleavage, cellular trafficking, and interactions with negative regulators. Nucleic acid-sensing TLRs are particularly interesting in this regard, as they can both recognize host-derived structures and require internalization of their ligand as a result of intracellular sequestration of the nucleic acid-sensing TLRs. This review summarizes the regulatory mechanisms of TLRs, including regulation of their access to ligands, receptor folding, intracellular trafficking, and post-translational modifications, as well as how altered control mechanism could contribute to inflammatory and autoimmune disorders.


Assuntos
Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Imunidade Adaptativa , Alarminas/imunologia , Animais , Dimerização , Endossomos/imunologia , Glicosilação , Humanos , Imunidade Inata , Infecções/imunologia , Ligantes , Ácidos Nucleicos/imunologia , Fosforilação , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Transporte Proteico , Relação Estrutura-Atividade , Receptores Toll-Like/ultraestrutura , Ubiquitinação
13.
J Leukoc Biol ; 100(3): 525-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26957214

RESUMO

Innate sensing of pathogens elicits protective immune responses through pattern recognition receptors, including Toll-like receptors. Although signaling by Toll-like receptors is regulated at multiple steps, including localization, trafficking, proteolytic cleavage, and phosphorylation, the significance of post-translational modifications and cellular stress response on Toll-like receptor stability and signaling is still largely unknown. In the present study, we investigated the role of cytoplasmic tyrosine motifs in Toll-like receptor-9 stability, proteolytic cleavage, and signaling. We demonstrated that tyrosine phosphorylation is essential for mouse Toll-like receptor-9 protein stability and signaling. Upon inhibition of tyrosine kinases with piceatannol, Toll-like receptor-9 tyrosine phosphorylation induced by CpG deoxyribonucleic acid was inhibited, which correlated with decreased signaling. Furthermore, inhibition of Src kinases with 1-tert-Butyl-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine also inhibited response to CpG deoxyribonucleic acid. Toll-like receptor-9 protein stability was also sensitive to autophagy, the cellular stress response pathway, and infection by a deoxyribonucleic acid virus. Whereas autophagy induced by rapamycin or low serum levels caused a preferential loss of the mature p80 proteolytic cleavage product, infection with herpes simplex virus-1 and induction of cell stress with tunicamycin caused preferential loss of full-length Toll-like receptor-9, which is localized to the endoplasmic reticulum. Our data reveal new information about the stability and signaling of Toll-like receptor-9 and suggest that immune evasion mechanisms may involve targeted loss of innate sensing receptors.


Assuntos
Estresse do Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Receptor Toll-Like 9/química , Receptor Toll-Like 9/fisiologia , Tirosina/metabolismo , Animais , Camundongos , Camundongos Knockout , Fosforilação , Estabilidade Proteica , Proteólise , Transdução de Sinais
14.
Vaccine ; 34(10): 1252-8, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26827663

RESUMO

Currently approved influenza vaccines predominantly protect through antibodies directed against the highly variable glycoprotein hemagglutinin (HA), necessitating annual redesign and formulation based on epidemiological prediction of predominant circulating strains. More conserved influenza protein sequences, such as the ectodomain of the influenza M2 protein, or M2e, show promise as a component of a universal influenza A vaccine, but require a Th1-biased immune response for activity. Recently, recombinant, bacterially derived outer membrane vesicles (OMVs) demonstrated potential as a platform to promote a Th1-biased immune response to subunit antigens. Here, we engineer three M2e-OMV vaccines and show that all elicit strong IgG titers, with high IgG2a:IgG1 ratios, in BALB/c mice. Additionally, the administration of one M2e-OMV construct containing tandem heterologous M2e peptides (M2e4xHet-OMV) resulted in 100% survival against lethal doses of the mouse-adapted H1N1 influenza strain PR8. Passive transfer of antibodies from M2e4xHet-OMV vaccinated mice to unvaccinated mice also resulted in 100% survival to challenge, indicating that protection is driven largely via antibody-mediated immunity. The potential mechanism through which M2e-OMVs initiated the immune response was explored and it was found that the constructs triggered TLR1/2, TLR4, and TLR5. Our data indicate that OMVs have potential as a platform for influenza A vaccine development due to their unique adjuvant profile and intrinsic pathogen-mimetic nature.


Assuntos
Vesículas Extracelulares/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Escherichia coli/metabolismo , Feminino , Imunidade Inata , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H1N1 , Camundongos Endogâmicos BALB C , Nanopartículas , Receptores Toll-Like/agonistas , Vacinas Sintéticas/imunologia
15.
J Med Chem ; 58(9): 3922-43, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25901531

RESUMO

Grp94 is involved in the regulation of a restricted number of proteins and represents a potential target in a host of diseases, including cancer, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis, and stroke. We have recently identified a novel allosteric pocket located in the Grp94 N-terminal binding site that can be used to design ligands with a 2-log selectivity over the other Hsp90 paralogs. Here we perform extensive SAR investigations in this ligand series and rationalize the affinity and paralog selectivity of choice derivatives by molecular modeling. We then use this to design 18c, a derivative with good potency for Grp94 (IC50 = 0.22 µM) and selectivity over other paralogs (>100- and 33-fold for Hsp90α/ß and Trap-1, respectively). The paralog selectivity and target-mediated activity of 18c was confirmed in cells through several functional readouts. Compound 18c was also inert when tested against a large panel of kinases. We show that 18c has biological activity in several cellular models of inflammation and cancer and also present here for the first time the in vivo profile of a Grp94 inhibitor.


Assuntos
Adenina/análogos & derivados , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Purinas/química , Adenina/química , Adenina/farmacocinética , Adenina/farmacologia , Sítio Alostérico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Fator de Crescimento Insulin-Like II/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ligação Proteica , Purinas/farmacocinética , Purinas/farmacologia , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Distribuição Tecidual , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
16.
Biomacromolecules ; 16(2): 564-77, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25531946

RESUMO

Electrostatically self-assembling hybrid microparticles derived from novel cationic unsaturated arginine-based poly(ester amide) polymers (UArg-PEA) and anionic hyaluronic acid (HA) were fabricated into sub-micron-sized particles in aqueous medium with subsequent UV crosslinking treatment to stabilize the structure. These hybrid microparticles were characterized for size, charge, viscosity, chemical structure, morphology, and biological properties. Depending on the feed ratio of cationic UArg-PEA to anionic HA, the crosslinked microparticles formed spherical structures of 0.772-22.08 µm in diameter, whereas the uncrosslinked microparticles formed a core with an outer petal-like structure of 2.49-15 µm in diameter. It was discovered that the morphological structure of the self-assembled microparticles had a profound influence on their biological properties. At a 1:1 feed ratio of UArg-PEA to HA, the uncrosslinked microparticles showed no cytotoxicity toward NIH 3T3 fibroblasts at concentrations up to 20 µg/mL, and the crosslinked particles exhibited no cytotoxicity at concentrations up to 10 µg/mL. The UArg-PEA/HA hybrid microparticles exhibited a significantly lower macrophage-induced proinflammatory response (via TNF-α) than that from a pure hyaluronic acid control while retaining the beneficial anti-inflammatory IL-10 production by HA. The UArg-PEA/HA microparticles also stimulated size-dependent induction of arginase activity. Therefore, self-assembling these two types of biomaterials in a favorable nontoxic aqueous environment, having complementary biological properties like those of the currently reported UArg-PEA/HA hybrid microparticles, may provide a new class of biomaterials to improve the overall tissue microenvironment for promoting wound healing.


Assuntos
Materiais Biocompatíveis/química , Ácido Hialurônico/química , Polissacarídeos/química , Eletricidade Estática , Animais , Materiais Biocompatíveis/metabolismo , Ácido Hialurônico/metabolismo , Macrófagos/metabolismo , Camundongos , Células NIH 3T3 , Polissacarídeos/metabolismo , Propriedades de Superfície , Viscosidade
17.
PLoS One ; 9(11): e112802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426709

RESUMO

Recombinant subunit vaccine engineering increasingly focuses on the development of more effective delivery platforms. However, current recombinant vaccines fail to sufficiently stimulate protective adaptive immunity against a wide range of pathogens while remaining a cost effective solution to global health challenges. Taking an unorthodox approach to this fundamental immunological challenge, we isolated the TLR-targeting capability of the probiotic E. coli Nissle 1917 bacteria (EcN) by engineering bionanoparticlate antigen carriers derived from EcN outer membrane vesicles (OMVs). Exogenous model antigens expressed by these modified bacteria as protein fusions with the bacterial enterotoxin ClyA resulted in their display on the surface of the carrier OMVs. Vaccination with the engineered EcN OMVs in a BALB/c mouse model, and subsequent mechanism of action analysis, established the EcN OMV's ability to induce self-adjuvanted robust and protective humoral and T(H)1-biased cellular immunity to model antigens. This finding appears to be strain-dependent, as OMV antigen carriers similarly engineered from a standard K12 E. coli strain derivative failed to generate a comparably robust antigen-specific TH1 bias. The results demonstrate that unlike traditional subunit vaccines, these biomolecularly engineered "pathogen-like particles" derived from traditionally overlooked, naturally potent immunomodulators have the potential to effectively couple recombinant antigens with meaningful immunity in a broadly applicable fashion.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Escherichia coli/imunologia , Células Th1/imunologia , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Membrana Celular/química , Membrana Celular/imunologia , Escherichia coli/química , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Feminino , Expressão Gênica , Proteínas Hemolisinas/administração & dosagem , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Probióticos/química , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Especificidade da Espécie , Células Th1/citologia , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas
18.
Immunol Lett ; 162(2 Pt A): 3-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25284610

RESUMO

Immunodeficiencies can lead to alterations of the gut microbiome that render it pathogenic and capable of transmitting disease to naïve hosts. Here, we review the role of Toll-like receptor (TLR) 5, the innate receptor for bacterial flagellin, in immune responses to the normal gut microbiota with a focus its role on adaptive immunity. Loss of TLR5 has profound effects on the microbiota that include greater temporal instability of major lineages and upregulation of flagellar motility genes that may be linked to the reduced levels of anti-flagellin antibodies in the TLR5(-/-) host. A variety of human TLR5 gene alleles exist that also associated with inflammatory conditions and may do so via effects on the gut microbiome and altered host-microbial crosstalk.


Assuntos
Flagelina/metabolismo , Inflamação/imunologia , Mucosa Intestinal/imunologia , Microbiota , Receptor 5 Toll-Like/metabolismo , Imunidade Adaptativa , Animais , Formação de Anticorpos/genética , Flagelina/genética , Flagelina/imunologia , Regulação Bacteriana da Expressão Gênica/genética , Predisposição Genética para Doença , Variação Genética , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Receptor 5 Toll-Like/genética
19.
PLoS One ; 8(3): e58513, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554897

RESUMO

Francisella tularensis (Ft) is a highly infectious intracellular pathogen and the causative agent of tularemia. Because Ft can be dispersed via small droplet-aerosols and has a very low infectious dose it is characterized as a category A Select Agent of biological warfare. Respiratory infection with the attenuated Live Vaccine Strain (LVS) and the highly virulent SchuS4 strain of Ft engenders intense peribronchiolar and perivascular inflammation, but fails to elicit select pro-inflammatory mediators (e.g., TNF, IL-1ß, IL-6, IL-12, and IFN-γ) within the first ~72 h. This in vivo finding is discordant with the principally TH1-oriented response to Ft frequently observed in cell-based studies wherein the aforementioned cytokines are produced. An often overlooked confounding factor in the interpretation of experimental results is the influence of environmental cues on the bacterium's capacity to elicit certain host responses. Herein, we reveal that adaptation of Ft to its mammalian host imparts an inability to elicit select pro-inflammatory mediators throughout the course of infection. Furthermore, in vitro findings that non-host adapted Ft elicits such a response from host cells reflect aberrant recognition of the DNA of structurally-compromised bacteria by AIM2-dependent and -independent host cell cytosolic DNA sensors. Growth of Ft in Muller-Hinton Broth or on Muller-Hinton-based chocolate agar plates or genetic mutation of Ft was found to compromise the structural integrity of the bacterium thus rendering it capable of aberrantly eliciting pro-inflammatory mediators (e.g., TNF, IL-1ß, IL-6, IL-12, and IFN-γ). Our studies highlight the profound impact of different growth conditions on host cell response to infection and demonstrate that not all in vitro-derived findings may be relevant to tularemia pathogenesis in the mammalian host. Rational development of a vaccine and immunotherapeutics can only proceed from a foundation of knowledge based upon in vitro findings that recapitulate those observed during natural infection.


Assuntos
Citocinas/imunologia , Francisella tularensis/imunologia , Infecções Respiratórias/imunologia , Tularemia/imunologia , Animais , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Francisella tularensis/patogenicidade , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tularemia/microbiologia , Tularemia/patologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia
20.
Infect Immun ; 81(4): 1354-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403558

RESUMO

Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses.


Assuntos
Interleucinas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th2/imunologia , Trichinella spiralis/imunologia , Animais , Interleucina-33 , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA