Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Vet J ; 276: 105731, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391916

RESUMO

Streptococcus uberis (S. uberis) is a mastitis pathogen with an environmental reservoir. Management factors related to housing design and bedding are associated with the risk of S. uberis mastitis. This study aimed to investigate the ability of five distinct strains of S. uberis to survive and replicate on three common bedding materials (sand, wheat straw and kiln dried pine sawdust). Sterilized bedding substrates were inoculated with S. uberis and incubated at room temperature. Bacterial recovery from these media over time indicated that S. uberis numbers increased on used bedding materials, suggesting the addition of faeces and urine promoted replication. The bacterium was recovered for at least 35 days on straw and sand bedding, but could not be recovered beyond 7 days on clean or used sawdust. This study demonstrates the importance of bedding type and management on the environmental survival of S. uberis.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Mastite , Animais , Roupas de Cama, Mesa e Banho , Bovinos , Feminino , Mastite/veterinária , Streptococcus
2.
J Dairy Sci ; 104(11): 12042-12052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34334197

RESUMO

Streptococcus uberis is a major causative agent of bovine mastitis worldwide, negatively affecting both milk production and animal welfare. Mammary infections result from environmental reservoirs, with cattle themselves required to propagate the infection cycle. Two longitudinal studies were performed to investigate the prevalence of Streptococcus uberis within feces and to evaluate factors which may affect gastrointestinal carriage. Bacterial detection was confirmed using a PCR-based method directed against sub0888 that detected S. uberis at an analytical sensitivity of 12 cfu/g of bovine feces. The first study sampled an entire herd at 8-wk intervals, over a 10-mo period and identified that maintenance of S. uberis within the dairy cow environment was due to a high proportion of animals shedding S. uberis and not due to a low number of "super-shedding" cows within the herd. Seasonality influenced detection rates, with detection levels significantly higher for housed cattle compared with those at pasture. Multilevel logistic regression was used to identify significant factors that affected S. uberis detection; these included parity, stage of lactation, and body condition score. An additional study involved screening a smaller cohort of cows housed over a 4-wk period and identified an increased probability of detection if cows were housed in loose straw yards, compared those in straw cubicles. This study highlighted several cow and management related factors that affect both detection of S. uberis and future infection risks.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Animais , Bovinos , Fezes , Feminino , Mastite Bovina/epidemiologia , Leite , Prevalência , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus
3.
Vet Med Int ; 2020: 8828624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376590

RESUMO

Streptococcus uberis is one of the leading causes worldwide of mastitis in the dairy industry, with the most likely sources of infection attributed to environmental reservoirs such as contaminated bedding materials. Early detection of those cases most likely to progress to clinical disease would lead to improved animal welfare, a critical component of overall health and productivity. A multiplex PCR-based diagnostic test was developed for detection of S. uberis directly from milk and targeting two genes previously identified as important for intramammary colonisation and persistence in dairy cattle. Results indicated the threshold for detection directly from milk was 20,000 CFU/ml and this was achieved without the need for preenrichment. In addition, S. uberis could be identified from milk samples collected during intramammary challenge studies, prior to clinical signs of infection and at much lower detection limits. The PCR test developed for confirmation of the presence of S. uberis directly from infected milk has potential value as a diagnostic test to identify early infection and/or to confirm that antibiotic therapy has been successful.

4.
Pathogens ; 9(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260788

RESUMO

Streptococcus uberis is a common cause of intramammary infection and mastitis in dairy cattle. Unlike other mammary pathogens, S. uberis evades detection by mammary epithelial cells, and the host-pathogen interactions during early colonisation are poorly understood. Intramammary challenge of dairy cows with S. uberis (strain 0140 J) or isogenic mutants lacking the surface-anchored serine protease, SUB1154, demonstrated that virulence was dependent on the presence and correct location of this protein. Unlike the wild-type strain, the mutant lacking SUB1154 failed to elicit IL-1ß from ex vivo CD14+ cells obtained from milk (bovine mammary macrophages, BMM), but this response was reinstated by complementation with recombinant SUB1154; the protein in isolation elicited no response. Production of IL-1ß was ablated in the presence of various inhibitors, indicating dependency on internalisation and activation of NLRP3 and caspase-1, consistent with inflammasome activation. Similar transcriptomic changes were detected in ex vivo BMM in response to the wild-type or the SUB1154 deletion mutant, consistent with S. uberis priming BMM, enabling the SUB1154 protein to activate inflammasome maturation in a transcriptionally independent manner. These data can be reconciled in a novel model of pathogenesis in which, paradoxically, early colonisation is dependent on the innate response to the initial infection.

5.
Microbiol Resour Announc ; 9(36)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883783

RESUMO

Here, we report the complete genome of piscine Streptococcus agalactiae 01173 serotype Ia, which was generated using long-read sequencing technology. The bacteria were isolated from wild fish displaying signs of streptococcosis, from a fish kill incident in Kuwait.

6.
Microb Genom ; 6(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32228801

RESUMO

The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. Streptococcus equi subspecies equi is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of S. equi in whole equine blood or in the presence of H2O2 to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in S. equi, following incubation in whole blood and in the presence of H2O2, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of S. equi in whole blood or H2O2, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for S. equi to resist aspects of the immune response in vitro, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.


Assuntos
Proteínas de Bactérias/genética , Sangue/microbiologia , Peróxido de Hidrogênio/farmacologia , Mutagênese Sítio-Dirigida/veterinária , Streptococcus/crescimento & desenvolvimento , Animais , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Análise de Sequência de DNA , Streptococcus/efeitos dos fármacos , Streptococcus/genética
7.
BMC Genomics ; 18(1): 426, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569133

RESUMO

BACKGROUND: Utilising next generation sequencing to interrogate saturated bacterial mutant libraries provides unprecedented information for the assignment of genome-wide gene essentiality. Exposure of saturated mutant libraries to specific conditions and subsequent sequencing can be exploited to uncover gene essentiality relevant to the condition. Here we present a barcoded transposon directed insertion-site sequencing (TraDIS) system to define an essential gene list for Streptococcus equi subsp. equi, the causative agent of strangles in horses, for the first time. The gene essentiality data for this group C Streptococcus was compared to that of group A and B streptococci. RESULTS: Six barcoded variants of pGh9:ISS1 were designed and used to generate mutant libraries containing between 33,000-66,000 unique mutants. TraDIS was performed on DNA extracted from each library and data were analysed separately and as a combined master pool. Gene essentiality determined that 19.5% of the S. equi genome was essential. Gene essentialities were compared to those of group A and group B streptococci, identifying concordances of 90.2% and 89.4%, respectively and an overall concordance of 83.7% between the three species. CONCLUSIONS: The use of barcoded pGh9:ISS1 to generate mutant libraries provides a highly useful tool for the assignment of gene function in S. equi and other streptococci. The shared essential gene set of group A, B and C streptococci provides further evidence of the close genetic relationships between these important pathogenic bacteria. Therefore, the ABC of gene essentiality reported here provides a solid foundation towards reporting the functional genome of streptococci.


Assuntos
Genes Bacterianos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Streptococcus/genética , Genes Essenciais/genética , Genômica , Mutação
8.
Front Microbiol ; 7: 1645, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826289

RESUMO

The Pragmatic Insertional Mutation Mapping (PIMMS) laboratory protocol was developed alongside various bioinformatics packages (Blanchard et al., 2015) to enable detection of essential and conditionally essential genes in Streptococcus and related bacteria. This extended the methodology commonly used to locate insertional mutations in individual mutants to the analysis of mutations in populations of bacteria. In Streptococcus uberis, a pyogenic Streptococcus associated with intramammary infection and mastitis in ruminants, the mutagen pGhost9:ISS1 was shown to integrate across the entire genome. Analysis of >80,000 mutations revealed 196 coding sequences, which were not be mutated and a further 67 where mutation only occurred beyond the 90th percentile of the coding sequence. These sequences showed good concordance with sequences within the database of essential genes and typically matched sequences known to be associated with basic cellular functions. Due to the broad utility of this mutagen and the simplicity of the methodology it is anticipated that PIMMS will be of value to a wide range of laboratories in functional genomic analysis of a wide range of Gram positive bacteria (Streptococcus, Enterococcus, and Lactococcus) of medical, veterinary, and industrial significance.

9.
Vet Res ; 47: 13, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738804

RESUMO

Streptococcus uberis is frequently isolated from the mammary gland of dairy cattle. Infection with some strains can induce mild subclinical inflammation whilst others induce severe inflammation and clinical mastitis. We compared here the inflammatory response of primary cultures of bovine mammary epithelial cells (pbMEC) towards S. uberis strains collected from clinical or subclinical cases (seven strains each) of mastitis with the strong response elicited by Escherichia coli. Neither heat inactivated nor live S. uberis induced the expression of 10 key immune genes (including TNF, IL1B, IL6). The widely used virulent strain 0140J and the avirulent strain, EF20 elicited similar responses; as did mutants defective in capsule (hasA) or biofilm formation (sub0538 and sub0539). Streptococcus uberis failed to activate NF-κB in pbMEC or TLR2 in HEK293 cells, indicating that S. uberis particles did not induce any TLR-signaling in MEC. However, preparations of lipoteichoic acid (LTA) from two strains strongly induced immune gene expression and activated NF-κB in pbMEC, without the involvement of TLR2. The immune-stimulatory LTA must be arranged in the intact S. uberis such that it is unrecognizable by the relevant pathogen receptors of the MEC. The absence of immune recognition is specific for MEC, since the same S. uberis preparations strongly induced immune gene expression and NF-κB activity in the murine macrophage model cell RAW264.7. Hence, the sluggish immune response of MEC and not of professional immune cells to this pathogen may aid establishment of the often encountered belated and subclinical phenotype of S. uberis mastitis.


Assuntos
Células Epiteliais/fisiologia , Macrófagos/fisiologia , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus/classificação , Animais , Bovinos , Doenças dos Bovinos , Linhagem Celular , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia
10.
BMC Genomics ; 16: 334, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25898893

RESUMO

BACKGROUND: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains. RESULTS: Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection. CONCLUSION: The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first "whole-genome" comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content.


Assuntos
Genoma Bacteriano , Streptococcus/genética , Virulência/genética , Animais , Bacteriocinas/metabolismo , Sequência de Bases , Bovinos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Hibridização Genômica Comparativa , Feminino , Mastite Bovina/genética , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Leite/microbiologia , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus/classificação , Streptococcus/patogenicidade
11.
Front Genet ; 6: 139, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914720

RESUMO

UNLABELLED: The PIMMS (Pragmatic Insertional Mutation Mapping System) pipeline has been developed for simple conditionally essential genome discovery experiments in bacteria. Capable of using raw sequence data files alongside a FASTA sequence of the reference genome and GFF file, PIMMS will generate a tabulated output of each coding sequence with corresponding mapped insertions accompanied with normalized results enabling streamlined analysis. This allows for a quick assay of the genome to identify conditionally essential genes on a standard desktop computer prioritizing results for further investigation. AVAILABILITY: The PIMMS script, manual and accompanying test data is freely available at https://github.com/ADAC-UoN/PIMMS.

12.
Vet Res ; 43: 17, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22417166

RESUMO

Bovine mastitis remains the most common and costly disease of dairy cattle worldwide. A complementary control measure to herd hygiene and vaccine development would be to selectively breed cattle with greater resistance to mammary infection. Toll-like receptor 1 (TLR1) has an integral role for the initiation and regulation of the immune response to microbial pathogens, and has been linked to numerous inflammatory diseases. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) within the bovine TLR1 gene (boTLR1) are associated with clinical mastitis (CM).Selected boTLR1 SNPs were analysed within a Holstein Friesian herd. Significant associations were found for the tagging SNP -79 T > G and the 3'UTR SNP +2463 C > T. We observed favourable linkage of reduced CM with increased milk fat and protein, indicating selection for these markers would not be detrimental to milk quality. Furthermore, we present evidence that some of these boTLR1 SNPs underpin functional variation in bovine TLR1. Animals with the GG genotype (from the tag SNP -79 T > G) had significantly lower boTLR1 expression in milk somatic cells when compared with TT or TG animals. In addition, stimulation of leucocytes from GG animals with the TLR1-ligand Pam3csk4 resulted in significantly lower levels of CXCL8 mRNA and protein.SNPs in boTLR1 were significantly associated with CM. In addition we have identified a bovine population with impaired boTLR1 expression and function. This may have additional implications for animal health and warrants further investigation to determine the suitability of identified SNPs as markers for disease susceptibility.


Assuntos
Mastite Bovina/genética , Leite/química , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor 1 Toll-Like/genética , Animais , Bovinos , Contagem de Células/veterinária , Feminino , Estudos de Associação Genética/veterinária , Marcadores Genéticos , Lactação , Mastite Bovina/imunologia , Mastite Bovina/microbiologia , Reação em Cadeia da Polimerase/veterinária , Receptor 1 Toll-Like/metabolismo
13.
Microbiology (Reading) ; 158(Pt 6): 1581-1592, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22383474

RESUMO

The regulation and control of gene expression in response to differing environmental stimuli is crucial for successful pathogen adaptation and persistence. The regulatory gene vru of Streptococcus uberis encodes a stand-alone response regulator with similarity to the Mga of group A Streptococcus. Mga controls expression of a number of important virulence determinants. Experimental intramammary challenge of dairy cattle with a mutant of S. uberis carrying an inactivating lesion in vru showed reduced ability to colonize the mammary gland and an inability to induce clinical signs of mastitis compared with the wild-type strain. Analysis of transcriptional differences of gene expression in the mutant, determined by microarray analysis, identified a number of coding sequences with altered expression in the absence of Vru. These consisted of known and putative virulence determinants, including Lbp (Sub0145), SclB (Sub1095), PauA (Sub1785) and hasA (Sub1696).


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mastite Bovina/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus/metabolismo , Streptococcus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Bovinos , Feminino , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Virulência , Fatores de Virulência/genética
14.
Vet Res ; 41(5): 63, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20519112

RESUMO

Streptococcus uberis, strain 0140J, contains a single copy sortase A (srtA), encoding a transamidase capable of covalently anchoring specific proteins to peptidoglycan. Unlike the wild-type, an isogenic mutant carrying an inactivating ISS1 insertion within srtA was only able to infect the bovine mammary gland in a transient fashion. For the first 24 h post challenge, the srtA mutant colonised at a similar rate and number to the wild type strain, but unlike the wild type did not subsequently colonise in higher numbers. Similar levels of host cell infiltration were detected in response to infection with both strains, but only in those mammary quarters infected with the wild type strain were clinical signs of disease evident. Mutants that failed to express individual sortase substrate proteins (sub0135, sub0145, sub0207, sub0241, sub0826, sub0888, sub1095, sub1154, sub1370, and sub1730) were isolated and their virulence determined in the same challenge model. This revealed that mutants lacking sub0145, sub1095 and sub1154 were attenuated in cattle. These data demonstrate that a number of sortase anchored proteins each play a distinct, non-redundant and important role in pathogenesis of S. uberis infection within the lactating bovine mammary gland.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Mastite Bovina/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus/classificação , Streptococcus/patogenicidade , Aminoaciltransferases/genética , Animais , Proteínas de Bactérias/genética , Bovinos , Cisteína Endopeptidases/genética , DNA Bacteriano/genética , Indústria de Laticínios , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Lactação , Mutação , Infecções Estreptocócicas/microbiologia
15.
J Proteome Res ; 9(2): 1088-95, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20038184

RESUMO

Sortase (a transamidase) has been shown to be responsible for the covalent attachment of proteins to the bacterial cell wall. Anchoring is effected on secreted proteins containing a specific cell wall motif toward their C-terminus; that for sortase A (SrtA) in Gram-positive bacteria often incorporates the sequence LPXTG. Such surface proteins are often characterized as virulence determinants and play important roles during the establishment and persistence of infection. Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis, which impacts on animal health and welfare and the economics of milk production. Comparison of stringently produced cell wall fractions from S. uberis and an isogenic mutant strain lacking SrtA permitted identification of 9 proteins likely to be covalently anchored at the cell surface. Analysis of these sequences implied the presence of two anchoring motifs for S. uberis, the classical LPXTG motif and an additional LPXXXD motif.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Oligopeptídeos/química , Homologia de Sequência de Aminoácidos , Streptococcus , Especificidade por Substrato
16.
PLoS One ; 4(7): e6072, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19603075

RESUMO

BACKGROUND: Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE: The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.


Assuntos
Resistência Microbiana a Medicamentos/genética , Streptococcus suis/patogenicidade , Virulência/genética , Zoonoses/microbiologia , Animais , DNA Bacteriano/genética , Surtos de Doenças , Genoma Bacteriano , Humanos , Filogenia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/classificação , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética
17.
BMC Genomics ; 10: 54, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19175920

RESUMO

BACKGROUND: Streptococcus uberis, a Gram positive bacterial pathogen responsible for a significant proportion of bovine mastitis in commercial dairy herds, colonises multiple body sites of the cow including the gut, genital tract and mammary gland. Comparative analysis of the complete genome sequence of S. uberis strain 0140J was undertaken to help elucidate the biology of this effective bovine pathogen. RESULTS: The genome revealed 1,825 predicted coding sequences (CDSs) of which 62 were identified as pseudogenes or gene fragments. Comparisons with related pyogenic streptococci identified a conserved core (40%) of orthologous CDSs. Intriguingly, S. uberis 0140J displayed a lower number of mobile genetic elements when compared with other pyogenic streptococci, however bacteriophage-derived islands and a putative genomic island were identified. Comparative genomics analysis revealed most similarity to the genomes of Streptococcus agalactiae and Streptococcus equi subsp. zooepidemicus. In contrast, streptococcal orthologs were not identified for 11% of the CDSs, indicating either unique retention of ancestral sequence, or acquisition of sequence from alternative sources. Functions including transport, catabolism, regulation and CDSs encoding cell envelope proteins were over-represented in this unique gene set; a limited array of putative virulence CDSs were identified. CONCLUSION: S. uberis utilises nutritional flexibility derived from a diversity of metabolic options to successfully occupy a discrete ecological niche. The features observed in S. uberis are strongly suggestive of an opportunistic pathogen adapted to challenging and changing environmental parameters.


Assuntos
Adaptação Biológica/genética , Genoma Bacteriano , Streptococcus/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Hibridização Genômica Comparativa , DNA Bacteriano/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genes Bacterianos , Ilhas Genômicas , Mastite Bovina/microbiologia , Filogenia , Análise de Sequência de DNA , Streptococcus/metabolismo , Streptococcus/patogenicidade , Virulência
18.
J Mol Biol ; 381(3): 734-47, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18588895

RESUMO

The characteristics of a streptococcal plasminogen activator (PA) displaying specificity for ruminant plasminogen (Plg) were defined using molecular approaches. The 16-kDa secreted protein PadA was found to be prevalent in Streptococcus dysgalactiae subspecies dysgalactiae isolated from cases of bovine mastitis and septic arthritis in lambs. PadA was able to activate bovine, ovine and caprine Plg, but not human Plg. Amino acid sequence analysis identified a limited level of homology to other streptococcal PAs, including streptokinase; however, PadA was found to align well with and match in size the staphylococcal PA, staphylokinase. Recombinant PadA was used to investigate interaction with bovine Plg, leading to formation of an activator complex that was capable of recruiting and converting further substrate Plg into plasmin. Individual non-overlapping peptides of PadA or bovine microplasminogen were found to block the interaction between PadA and bovine Plg, preventing the formation of the activation complex. Homology modelling based upon structures of staphylokinase complexed with human microplasminogen supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.


Assuntos
Proteínas de Bactérias/metabolismo , Ativadores de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Streptococcus/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Bovinos , Ativação Enzimática , Metaloendopeptidases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Plasminogênio/química , Ativadores de Plasminogênio/química , Ligação Proteica , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
19.
Vet Microbiol ; 119(2-4): 194-204, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16973306

RESUMO

Multilocus-sequence typing (MLST) was used to analyse Streptococcus uberis isolates from a single herd associated with long duration (50-260 days) and rapidly cleared (less than 1 month) bovine intramammary infections to determine whether the bacterial type had any impact on the duration of infection. Most chronic infections (24 of 33) were due to continuous infection of the mammary quarter with the same sequence type, and infections were found to persist for many months. The remaining quarters were re-infected with a different sequence type within a single lactation. No particular sequence type or clonal complex (lineage) was associated with persisting infections, indicating that the outcome of intramammary infections with S. uberis is more likely to be dependent on host factors than on inter-strain differences. Analysis of these strains alongside others obtained from the same herd at a later date revealed the shift in the predominant genotypes with time.


Assuntos
Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Filogenia , Infecções Estreptocócicas/veterinária , Streptococcus/classificação , Alelos , Animais , Bovinos , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Genótipo , Fatores de Risco , Infecções Estreptocócicas/microbiologia , Streptococcus/química , Streptococcus/genética , Streptococcus/isolamento & purificação , Fatores de Tempo
20.
Appl Environ Microbiol ; 72(2): 1420-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16461695

RESUMO

Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis throughout the world. Several procedures to differentiate S. uberis isolates have been proposed. However, all are prone to interlaboratory variation, and none is suitable for the description of the population structure. We describe here the development of a multilocus sequence typing (MLST) scheme for S. uberis to help address these issues. The sequences of seven housekeeping gene fragments from each of 160 United Kingdom milk isolates of S. uberis were determined. Between 5 and 17 alleles were obtained per locus, giving the potential to discriminate between 1.3 x 10(7) sequence types. In this study, 57 sequence types (STs) were identified. Statistical comparisons between the maximum-likelihood trees constructed by using the seven housekeeping gene fragments showed that the congruence was no better than that between each tree and trees of random topology, indicating there had been significant recombination within these loci. The population contained one major lineage (designated the ST-5 complex). This dominated the population, containing 24 STs and representing 112 isolates. The other 33 STs were not assigned to any clonal complex. All of the isolates in the ST-5 lineage carried hasA, a gene that is essential for capsule production. There was no clear association between ST or clonal complex and disease. The S. uberis MLST system offers researchers a valuable tool that allows further investigation of the population biology of this organism and insights into the epidemiology of this disease on a global scale.


Assuntos
Streptococcus/genética , Animais , Sequência de Bases , Bovinos , DNA Bacteriano/genética , Inglaterra , Evolução Molecular , Feminino , Genes Bacterianos , Glucuronosiltransferase/genética , Hialuronan Sintases , Mastite Bovina/microbiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus/classificação , Streptococcus/isolamento & purificação , Streptococcus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA