Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793583

RESUMO

Papillomaviruses (PV) infect epithelial cells and can cause hyperplastic or neoplastic lesions. In felids, most described PVs are from domestic cats (Felis catus; n = 7 types), with one type identified in each of the five wild felid species studied to date (Panthera uncia, Puma concolor, Leopardus wiedii, Panthera leo persica and Lynx rufus). PVs from domestic cats are highly diverse and are currently classified into three genera (Lambdapapillomavirus, Dyothetapapillomavirus, and Taupapillomavirus), whereas those from wild felids, although diverse, are all classified into the Lambdapapillomavirus genus. In this study, we used a metagenomic approach to identify ten novel PV genomes from rectal swabs of five deceased caracals (Caracal caracal) living in the greater Cape Town area, South Africa. These are the first PVs to be described from caracals, and represent six new PV types, i.e., Caracal caracal papillomavirus (CcarPV) 1-6. These CcarPV fall into two phylogenetically distinct genera: Lambdapapillomavirus, and Treisetapapillomavirus. Two or more PV types were identified in a single individual for three of the five caracals, and four caracals shared at least one of the same PV types with another caracal. This study broadens our understanding of wild felid PVs and provides evidence that there may be several wild felid PV lineages.


Assuntos
Felidae , Genoma Viral , Papillomaviridae , Infecções por Papillomavirus , Filogenia , Animais , África do Sul , Papillomaviridae/genética , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/veterinária , Felidae/virologia , Gatos , Metagenômica , Animais Selvagens/virologia
2.
Sci Total Environ ; 914: 169912, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184259

RESUMO

The use of marine subsidies by terrestrial predators can facilitate substantial transfer of nutrients between marine and terrestrial ecosystems. Marine resource subsidies may have profound effects on predator ecology, influencing population and niche dynamics. Expanding niches of top consumers can impact ecosystem resilience and interspecific interactions, affecting predator-prey dynamics and competition. We investigate the occurrence, importance, and impact of marine resources on trophic ecology and niche dynamics in a highly generalist predator, the caracal (Caracal caracal), on the Cape Peninsula, South Africa. Caracals have flexible diets, feeding across a wide range of terrestrial and aquatic prey. We use carbon and nitrogen stable isotope analysis of fur samples (n = 75) to understand trophic position and niche shifts in coastal and inland foragers, as well as the implications of a diet rich in marine resources. We found significant differences in isotope signatures between these groups, with higher δ13C (P < 0.05) and δ15N values (P < 0.01) in coastal foragers. Isotope mixing models reveal that these elevated signatures were due to non-terrestrial food subsidies, where approximately a third of coastal foraging caracal diet comprised marine prey. The addition of marine prey species to diet increased both the trophic level and isotope niche size of coastal foraging caracals, with potential impacts on prey populations and competition. Our results suggest that marine prey are an important dietary resource for coastal foraging caracals, where seabirds, including two endangered species, are a major component of their diet. However, there are likely risks associated with these resource benefits, as routine consumption of seabirds is linked with higher pollutant burdens, particularly metals. Increased encounters between this terrestrial predator and seabirds may be a result of increased mainland colonies due to changes in habitat availability and the highly opportunistic and generalist foraging behaviour of a native predator.


Assuntos
Ecologia , Ecossistema , Animais , Espécies em Perigo de Extinção , Dieta , Isótopos de Nitrogênio/análise , Cadeia Alimentar
3.
Sci Rep ; 13(1): 21582, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062237

RESUMO

Urbanisation critically alters wildlife habitat and resource distribution, leading to shifts in trophic dynamics. The loss of apex predators in human-transformed landscapes can result in changes in the ecological roles of the remaining mesocarnivores. Decreased top-down control together with increased bottom-up forcing through greater availability of anthropogenic foods can result in a predation paradox. Understanding these changes is important for conserving ecological function and biodiversity in rapidly urbanising systems. Here, we use stable isotope analysis to provide insight into longer term changes in trophic position, niche width and overlap of an elusive, medium-sized urban adapter, the caracal (Caracal caracal) in and around the city of Cape Town, South Africa. Using fur samples (n = 168) from individuals along a gradient of urbanisation we find that overall caracals have a broad isotopic dietary niche that reflects their large variation in resource use. When accounting for underlying environmental differences, the intensity of anthropogenic pressure, measured using the Human Footprint Index (HFI), explained variation in both food subsidy use (δ13C values) and trophic status (δ15N values). The significantly higher δ13C values (P < 0.01) and lower δ15N values (P < 0.001) of caracals in more urbanised areas suggest that predator subsidy consumption occurs via predictable, anthropogenic resource subsidies to synanthropic prey. These prey species are predominantly primary consumers, resulting in shifts in diet composition towards lower trophic levels. Further, caracals using areas with higher HFI had narrower isotope niches than those in less impacted areas, likely due to their hyperfocus on a few lower trophic level prey species. This pattern of niche contraction in urban areas is retained when accounting for caracal demographics, including sex and age. The removal of apex predators in human-transformed landscapes together with reliable resource availability, including abundant prey, may paradoxically limit the ecological influence of the remaining predators, and bring about a degree of predator trophic downgrading. The dampening of top-down control, and thus ecosystem regulation, likely points to widespread disruption of trophic dynamics in rapidly developing areas globally.


Assuntos
Carnívoros , Ecossistema , Animais , Animais Selvagens , Cadeia Alimentar , Isótopos de Nitrogênio/análise , África do Sul , Masculino , Feminino
4.
Environ Pollut ; 327: 121585, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040831

RESUMO

Urbanisation and associated anthropogenic activities release large quantities of toxic metals and metalloids into the environment, where they may bioaccumulate and threaten both wildlife and human health. In highly transformed landscapes, terrestrial carnivores may be at increased risk of exposure through biomagnification. We quantified metallic element and metalloid exposure in blood of caracals (Caracal caracal), an adaptable felid inhabiting the rapidly urbanising, coastal metropole of Cape Town, South Africa. Using redundancy analysis and mixed-effect models, we explored the influence of demography, landscape use, and diet on the concentration of 11 metals and metalloids. Although species-specific toxic thresholds are lacking, arsenic (As) and chromium (Cr) were present at potentially sublethal levels in several individuals. Increased use of human-transformed landscapes, particularly urban areas, roads, and vineyards, was significantly associated with increased exposure to aluminium (Al), cobalt (Co) and lead (Pb). Foraging closer to the coast and within aquatic food webs was associated with increased levels of mercury (Hg), selenium (Se) and arsenic, where regular predation on seabirds and waterbirds likely facilitates transfer of metals from aquatic to terrestrial food webs. Further, several elements were linked to lower haemoglobin levels (chromium, mercury, manganese, and zinc) and elevated levels of infection-fighting cells (mercury and selenium). Our results highlight the importance of anthropogenic activities as major environmental sources of metal contamination in terrestrial wildlife, including exposure across the land-ocean continuum. These findings contribute towards the growing evidence suggesting cities are particularly toxic areas for wildlife. Co-exposure to a suite of metal pollutants may threaten the long-term health and persistence of Cape Town's caracal population in unexpected ways, particularly when interacting with additional known pollutant and pathogen exposure. The caracal is a valuable sentinel for assessing metal exposure and can be used in pollution monitoring programmes to mitigate exposure and promote biodiversity conservation in human-dominated landscapes.


Assuntos
Arsênio , Poluentes Ambientais , Mercúrio , Metaloides , Metais Pesados , Selênio , Animais , Humanos , Arsênio/análise , Selênio/análise , África do Sul , Metais/análise , Mercúrio/análise , Poluentes Ambientais/análise , Cromo/análise , Metaloides/análise , Animais Selvagens , Oceanos e Mares , Metais Pesados/análise , Monitoramento Ambiental
5.
Sci Total Environ ; 822: 153581, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35104517

RESUMO

Wildlife around cities bioaccumulate multiple harmful environmental pollutants associated with human activities. Exposure severity can vary based on foraging behaviour and habitat use, which can be examined to elucidate exposure pathways. Carnivores can play vital roles in ecosystem stability but are particularly vulnerable to bioaccumulation of pollutants. Understanding the spatial and dietary predictors of these contaminants can inform pollutant control, and carnivores, at the top of food webs, can act as useful indicator species. We test for exposure to toxic organochlorines (OCs), including dichloro-diphenyl-trichloroethane (DDT) and polychlorinated biphenyls (PCBs), in a medium-sized felid, the caracal (Caracal caracal), across the peri-urban and agricultural landscapes of the city of Cape Town, South Africa. Concentrations in both blood (n = 69) and adipose tissue (n = 25) were analysed along with detailed spatial, dietary, demographic, and physiological data to assess OC sources and exposure risk. The analysis revealed widespread exposure of Cape Town's caracals to organochlorines: detection rate was 100% for PCBs and 83% for DDTs in blood, and 100% for both compounds in adipose. Caracals using human-transformed areas, such as vineyards and areas with higher human population and electrical transformer density, as well as wetland areas, had higher organochlorine burdens. These landscapes were also highly selected foraging areas, suggesting caracals are drawn into areas that co-incidentally increase their risk of exposure to these pollutants. Further, biomagnification potential was higher in individuals feeding on higher trophic level prey and on exotic prey. These findings point to bioaccumulation of OC toxicants and widespread exposure across local food webs. Additionally, we report possible physiological effects of exposure, including elevated white blood cell and platelet count, suggesting a degree of immunological response that may increase disease susceptibility. Cape Town's urban fringes likely represent a source of toxic chemicals for wildlife and require focused attention and action to ensure persistence of this adaptable mesocarnivore.


Assuntos
Hidrocarbonetos Clorados , Venenos , Bifenilos Policlorados , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Hidrocarbonetos Clorados/análise , Poluentes Orgânicos Persistentes , Venenos/análise , Bifenilos Policlorados/análise , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA