Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0134714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248315

RESUMO

Cell transition to a more aggressive mesenchymal-like phenotype is a hallmark of cancer progression that involves different steps and requires tightly regulated cell plasticity. SPARC (Secreted Protein Acidic and Rich in Cysteine) is a matricellular protein that promotes this transition in various malignant cell types, including melanoma cells. We found that suppression of SPARC expression in human melanoma cells compromised cell migration, adhesion, cytoskeleton structure, and cell size. These changes involved the Akt/mTOR pathway. Re-expression of SPARC or protein addition restored all the cell features. Suppression of SPARC expression was associated with increased Rac1-GTP levels and its membrane localization. Expression of the dominant negative mutant of Rac1 counteracted almost all the changes observed in SPARC-deficient cells. Overall, these data suggest that most of the SPARC-mediated effects occurred mainly through the blockade of Rac1 activity.


Assuntos
Plasticidade Celular , Osteonectina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Humanos , Integrinas/química , Integrinas/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Osteonectina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas rac1 de Ligação ao GTP/química
2.
PLoS Genet ; 6(6): e1000994, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585616

RESUMO

Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila melanogaster/genética , Hipóxia/genética , Interferência de RNA , Transcrição Gênica , Animais , Proteínas Argonautas , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Fatores de Iniciação em Eucariotos/genética , Estudo de Associação Genômica Ampla , Hipóxia/metabolismo
3.
J Cell Sci ; 122(Pt 21): 3973-82, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19825938

RESUMO

Stress granules (SGs) and P-bodies (PBs) are related cytoplasmic structures harboring silenced mRNAs. SGs assemble transiently upon cellular stress, whereas PBs are constitutive and are further induced by stress. Both foci are highly dynamic, with messenger ribonucleoproteins (mRNPs) and proteins rapidly shuttling in and out. Here, we show that impairment of retrograde transport by knockdown of mammalian dynein heavy chain 1 (DHC1) or bicaudal D1 (BicD1) inhibits SG formation and PB growth upon stress, without affecting protein-synthesis blockage. Conversely, impairment of anterograde transport by knockdown of kinesin-1 heavy chain (KIF5B) or kinesin light chain 1 (KLC1) delayed SG dissolution. Strikingly, SG dissolution is not required to restore translation. Simultaneous knockdown of dynein and kinesin reverted the effect of single knockdowns on both SGs and PBs, suggesting that a balance between opposing movements driven by these molecular motors governs foci formation and dissolution. Finally, we found that regulation of SG dynamics by dynein and kinesin is conserved in Drosophila.


Assuntos
Estruturas Citoplasmáticas/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Estruturas Citoplasmáticas/genética , Proteínas de Drosophila , Dineínas/genética , Cinesinas/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Células NIH 3T3 , Biossíntese de Proteínas
4.
J Cell Sci ; 122(Pt 4): 563-73, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19193871

RESUMO

Stress granules are cytoplasmic mRNA-silencing foci that form transiently during the stress response. Stress granules harbor abortive translation initiation complexes and are in dynamic equilibrium with translating polysomes. Mammalian Staufen 1 (Stau1) is a ubiquitous double-stranded RNA-binding protein associated with polysomes. Here, we show that Stau1 is recruited to stress granules upon induction of endoplasmic reticulum or oxidative stress as well in stress granules induced by translation initiation blockers. We found that stress granules lacking Stau1 formed in cells depleted of this molecule, indicating that Stau1 is not an essential component of stress granules. Moreover, Stau1 knockdown facilitated stress granule formation upon stress induction. Conversely, transient transfection of Stau1 impaired stress granule formation upon stress or pharmacological initiation arrest. The inhibitory capacity of Stau1 mapped to the amino-terminal half of the molecule, a region known to bind to polysomes. We found that the fraction of polysomes remaining upon stress induction was enriched in Stau1, and that Stau1 overexpression stabilized polysomes against stress. We propose that Stau1 is involved in recovery from stress by stabilizing polysomes, thus helping stress granule dissolution.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Células COS , Chlorocebus aethiops , Grânulos Citoplasmáticos/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Inibidores Enzimáticos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico HSP70/biossíntese , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Células NIH 3T3 , Estresse Oxidativo/fisiologia , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , RNA Interferente Pequeno , Proteínas de Ligação a RNA/química , Ratos , Estresse Fisiológico , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA