Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Neuropathol Exp Neurol ; 83(3): 144-160, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323418

RESUMO

The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.


Assuntos
Morte Súbita do Lactente , Lactente , Animais , Humanos , Idoso , Bulbo/metabolismo , Serotonina/metabolismo , Receptores de Serotonina/metabolismo
2.
Biosensors (Basel) ; 13(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37185555

RESUMO

Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) is a surgical procedure for alleviating motor symptoms of Parkinson's Disease (PD). The pattern of DBS (e.g., the electrode pairs used and the intensity of stimulation) is usually optimized by trial and error based on a subjective evaluation of motor function. We tested the hypotheses that DBS releases glutamate in selected basal ganglia nuclei and that the creation of 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions alters glutamate release during DBS in those basal ganglia nuclei. We studied the relationship between a pseudo-random binary sequence of DBS and glutamate levels in the STN itself or in the globus pallidus (GP) in anesthetized, control, and 6-OHDA-treated rats. We characterized the stimulus-response relationships between DBS and glutamate levels using a transfer function estimated using System Identification. Stimulation of the STN elevated glutamate levels in the GP and in the STN. Although the 6-OHDA treatment did not affect glutamate dynamics in the STN during DBS in the STN, the transfer function between DBS in the STN and glutamate levels in the GP was significantly altered by the presence or absence of 6-OHDA-induced lesions. Thus, glutamate responses in the GP in the 6-OHDA-treated animals (but not in the STN) depended on dopaminergic inputs. For this reason, measuring glutamate levels in the GP may provide a useful feedback target in a closed-loop DBS device in patients with PD since the dynamics of glutamate release in the GP during DBS seem to reflect the loss of dopaminergic neurons in the SNc.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Ratos , Animais , Globo Pálido , Oxidopamina , Estimulação Encefálica Profunda/métodos , Ácido Glutâmico , Retroalimentação , Doença de Parkinson/terapia
3.
J Neurosci ; 43(3): 419-432, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36639888

RESUMO

We tested the hypothesis that dorsal cervical epidural electrical stimulation (CEES) increases respiratory activity in male and female anesthetized rats. Respiratory frequency and minute ventilation were significantly increased when CEES was applied dorsally to the C2-C6 region of the cervical spinal cord. By injecting pseudorabies virus into the diaphragm and using c-Fos activity to identify neurons activated during CEES, we found neurons in the dorsal horn of the cervical spinal cord in which c-Fos and pseudorabies were co-localized, and these neurons expressed somatostatin (SST). Using dual viral infection to express the inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD), hM4D(Gi), selectively in SST-positive cells, we inhibited SST-expressing neurons by administering Clozapine N-oxide (CNO). During CNO-mediated inhibition of SST-expressing cervical spinal neurons, the respiratory excitation elicited by CEES was diminished. Thus, dorsal cervical epidural stimulation activated SST-expressing neurons in the cervical spinal cord, likely interneurons, that communicated with the respiratory pattern generating network to effect changes in ventilation.SIGNIFICANCE STATEMENT A network of pontomedullary neurons within the brainstem generates respiratory behaviors that are susceptible to modulation by a variety of inputs; spinal sensory and motor circuits modulate and adapt this output to meet the demands placed on the respiratory system. We explored dorsal cervical epidural electrical stimulation (CEES) excitation of spinal circuits to increase ventilation in rats. We identified dorsal somatostatin (SST)-expressing neurons in the cervical spinal cord that were activated (c-Fos-positive) by CEES. CEES no longer stimulated ventilation during inhibition of SST-expressing spinal neuronal activity, thereby demonstrating that spinal SST neurons participate in the activation of respiratory circuits affected by CEES. This work establishes a mechanistic foundation to repurpose a clinically accessible neuromodulatory therapy to activate respiratory circuits and stimulate ventilation.


Assuntos
Medula Cervical , Neurônios , Taxa Respiratória , Animais , Feminino , Masculino , Ratos , Medula Cervical/fisiologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos , Somatostatina/metabolismo , Somatostatina/farmacologia , Medula Espinal/fisiologia , Taxa Respiratória/fisiologia
4.
J Physiol ; 600(12): 2973-2999, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35639046

RESUMO

Opioid overdose suppresses brainstem respiratory circuits, causes apnoea and may result in death. Epidural electrical stimulation (EES) at the cervical spinal cord facilitated motor activity in rodents and humans, and we hypothesized that EES of the cervical spinal cord could antagonize opioid-induced respiratory depression in humans. Eighteen patients requiring surgical access to the dorsal surface of the spinal cord between C2 and C7 received EES or sham stimulation for up to 90 s at 5 or 30 Hz during complete (OFF-State) or partial suppression (ON-State) of respiration induced by remifentanil. During the ON-State, 30 Hz EES at C4 and 5 Hz EES at C3/4 increased tidal volume and decreased the end-tidal carbon dioxide level compared to pre-stimulation control levels. EES of 5 Hz at C5 and C7 increased respiratory frequency compared to pre-stimulation control levels. In the OFF-State, 30 Hz cervical EES at C3/4 terminated apnoea and induced rhythmic breathing. In cadaveric tissue obtained from a brain bank, more neurons expressed both the neurokinin 1 receptor (NK1R) and somatostatin (SST) in the cervical spinal levels responsive to EES (C3/4, C6 and C7) compared to a region non-responsive to EES (C2). Thus, the capacity of cervical EES to oppose opioid depression of respiration may be mediated by NK1R+/SST+ neurons in the dorsal cervical spinal cord. This study provides proof of principle that cervical EES may provide a novel therapeutic approach to augment respiratory activity when the neural function of the central respiratory circuits is compromised by opioids or other pathological conditions. KEY POINTS: Epidural electrical stimulation (EES) using an implanted spinal cord stimulator (SCS) is an FDA-approved method to manage chronic pain. We tested the hypothesis that cervical EES facilitates respiration during administration of opioids in 18 human subjects who were treated with low-dose remifentanil that suppressed respiration (ON-State) or high-dose remifentanil that completely inhibited breathing (OFF-State) during the course of cervical surgery. Dorsal cervical EES of the spinal cord augmented the respiratory tidal volume or increased the respiratory frequency, and the response to EES varied as a function of the stimulation frequency (5 or 30 Hz) and the cervical level stimulated (C2-C7). Short, continuous cervical EES restored a cyclic breathing pattern (eupnoea) in the OFF-State, suggesting that cervical EES reversed the opioid-induced respiratory depression. These findings add to our understanding of respiratory pattern modulation and suggest a novel mechanism to oppose the respiratory depression caused by opioids.


Assuntos
Medula Cervical , Insuficiência Respiratória , Traumatismos da Medula Espinal , Analgésicos Opioides/efeitos adversos , Apneia , Estimulação Elétrica/métodos , Humanos , Remifentanil , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/terapia , Medula Espinal/fisiologia
5.
Sci Rep ; 12(1): 7733, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545644

RESUMO

Spinal cord stimulation enhanced restoration of motor function following spinal cord injury (SCI) in unblinded studies. To determine whether training combined with transcutaneous electrical spinal cord stimulation (tSCS), with or without systemic serotonergic treatment with buspirone (busp), could improve hand function in individuals with severe hand paralysis following SCI, we assessed ten subjects in a double-blind, sham-controlled, crossover study. All treatments-busp, tSCS, and the busp plus tSCS-reduced muscle tone and spasm frequency. Buspirone did not have any discernible impact on grip force or manual dexterity when administered alone or in combination with tSCS. In contrast, grip force, sinusoidal force generation and grip-release rate improved significantly after 6 weeks of tSCS in 5 out of 10 subjects who had residual grip force within the range of 0.1-1.5 N at the baseline evaluation. Improved hand function was sustained in subjects with residual grip force 2-5 months after the tSCS and buspirone treatment. We conclude that tSCS combined with training improves hand strength and manual dexterity in subjects with SCI who have residual grip strength greater than 0.1 N. Buspirone did not significantly improve the hand function nor add to the effect of stimulation.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Buspirona , Estudos Cross-Over , Força da Mão , Humanos , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/terapia
6.
Antioxidants (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915992

RESUMO

Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity.

7.
Exp Neurol ; 326: 113165, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887304

RESUMO

Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models - all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.


Assuntos
Serotonina/fisiologia , Morte Súbita do Lactente , Animais , Nível de Alerta , Humanos , Lactente , Recém-Nascido , Respiração , Mecânica Respiratória
8.
Biomolecules ; 9(10)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623336

RESUMO

Cerium oxide (CeO2) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs. We separated the CeNPs into supernatant and pellet fractions and used commercially available enzymatic assays to measure the catalase-, superoxide dismutase (SOD)-, and oxidase-mimetic activity of each fraction. We tested the effects of these CeNPs in a mouse hippocampal brain slice model of ischemia to induce oxidative stress where the fluorescence indicator SYTOX green was used to assess cell death. Our results demonstrate that CeNPs stabilized with various ratios of CA/EDTA display different enzyme-mimetic activities. CeNPs with intermediate CA/EDTA stabilization ratios demonstrated greater neuroprotection in ischemic mouse brain slices, and the neuroprotective activity resides in the pellet fraction of the CeNPs. The neuroprotective effects of CeNPs stabilized with equal proportions of CA/EDTA (50/50) were also demonstrated in two other models of ischemia/reperfusion in mice and rats. Thus, CeNPs merit further development as a neuroprotective therapy for use in diseases associated with oxidative stress in the nervous system.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Ácido Cítrico/química , Ácido Edético/química , Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Catalase/química , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Cério/química , Cério/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nanopartículas/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/química , Oxirredutases/metabolismo , Tamanho da Partícula , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície
9.
Ultrasound J ; 11(1): 4, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31359267

RESUMO

BACKGROUND: Current methods of assessing competence in acquiring point-of-care ultrasound images are inadequate. They rely upon cumbersome rating systems that do not depend on the actual outcome measured and lack evidence of validity. We describe a new method that uses a rigorous statistical model to assess performance of individual trainees based on the actual task, image acquisition. Measurements obtained from the images acquired (the actual desired outcome) are themselves used to validate effective training and competence acquiring ultrasound images. We enrolled a convenience sample of 21 spontaneously breathing adults from a general medicine ward. In random order, two trainees (A and B) and an instructor contemporaneously acquired point-of-care ultrasound images of the inferior vena cava and the right internal jugular vein from the same patients. Blinded diameter measurements from each ultrasound were analyzed quantitatively using a multilevel model. Consistent mean differences between each trainee's and the instructor's images were ascribed to systematic acquisition errors, indicative of poor measurement technique and a need for further training. Wider variances were attributed to sporadic errors, indicative of inconsistent application of measurement technique across patients. In addition, the instructor recorded qualitative observations of each trainee's performance during image acquisition. RESULTS: For all four diameters, the means and variances of measurements from trainee A's images differed significantly from the instructor's, whereas those from trainee B's images were comparable. Techniques directly observed by the instructor supported these model-derived findings. For example, mean anteroposterior diameters of the internal jugular vein obtained from trainee A's images were 3.8 mm (90% CI 2.3-5.4) smaller than from the instructor's; this model-derived finding matched the instructor's observation that trainee A compressed the vein during acquisition. Instructor summative assessments agreed with model-derived findings, providing internal validation of the descriptive and quantitative assessments of competence acquiring ultrasound images. CONCLUSIONS: Clinical measurements obtained from point-of-care ultrasound images acquired contemporaneously by trainees and an instructor can be used to quantitatively assess the image acquisition competence of specific trainees. This method may obviate resource-intensive qualitative rating systems that are based on ultrasound image quality and direct observation, while also helping instructors guide remediation.

10.
Compr Physiol ; 9(3): 1025-1080, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187893

RESUMO

This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.


Assuntos
Mecânica Respiratória/fisiologia , Músculos Respiratórios/fisiologia , Animais , Desenvolvimento Fetal/fisiologia , Humanos , Mesoderma/anatomia & histologia , Recrutamento Neurofisiológico/fisiologia , Músculos Respiratórios/anatomia & histologia , Músculos Respiratórios/embriologia , Músculos Respiratórios/inervação , Sistema Respiratório/anatomia & histologia , Sono/fisiologia , Vigília/fisiologia
11.
PLoS One ; 13(4): e0196321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689088

RESUMO

INTRODUCTION: Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. METHODS: Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. RESULTS: Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P<0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. CONCLUSION: ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.


Assuntos
Circulação Coronária/fisiologia , Modelos Animais de Doenças , Oxigenação por Membrana Extracorpórea/métodos , Fluxo Pulsátil/fisiologia , Choque Cardiogênico/terapia , Suínos , Função Ventricular Esquerda/fisiologia , Animais , Vasos Coronários/fisiopatologia , Eletrocardiografia/métodos , Feminino , Hemodinâmica , Cuidados para Prolongar a Vida/métodos , Choque Cardiogênico/patologia , Choque Cardiogênico/fisiopatologia
12.
Front Hum Neurosci ; 11: 67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270757

RESUMO

This single-arm non-randomized pilot study explores an intervention to improve the health of flight attendants (FA) exposed to second-hand cigarette smoke prior to the smoking ban on commercial airlines. This group exhibits an unusual pattern of long-term pulmonary dysfunction. We report on Phase I of a two-phase clinical trial; the second Phase will be a randomized controlled trial testing digital delivery of the intervention. Subjects were recruited in the Northeastern US; testing and intervention were administered in 4 major cities. The intervention involved 12 h of training in Meditative Movement practices. Based on recent research on the effects of nicotine on fear learning, and the influence of the autonomic nervous system on immune function, our hypothesis was that this training would improve autonomic function and thus benefit a range of health measures. Primary outcomes were the 6-min walk test and blood levels of C-reactive protein. Pulmonary, cardiovascular, autonomic, and affective measures were also taken. Fourteen participants completed the training and post-testing. There was a 53% decrease in high sensitivity C-Reactive Protein (p ≤ 0.05), a 7% reduction in systolic blood pressure (p ≤ 0.05), a 13% increase in the 6-min walk test (p ≤ 0.005), and significant positive changes in several other outcomes. These results tend to confirm the hypothesized benefits of MM training for this population, and indicate that autonomic function may be important in the etiology and treatment of their symptoms. No adverse effects were reported. This trial is registered at ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02612389/), and is supported by a grant from the Flight Attendant Medical Research Institute (FAMRI).

13.
JACC Basic Transl Sci ; 1(5): 313-324, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27766316

RESUMO

Animal and human data indicate pathological afferent signaling emanating from the carotid body that drives sympathetically mediated elevations in blood pressure in conditions of hypertension. This first-in-man, proof-of-principle study tested the safety and feasibility of unilateral carotid body resection in 15 patients with drug-resistant hypertension. The procedure proved to be safe and feasible. Overall, no change in blood pressure was found. However, 8 patients showed significant reductions in ambulatory blood pressure coinciding with decreases in sympathetic activity. The carotid body may be a novel target for treating an identifiable subpopulation of humans with hypertension.

14.
J Appl Physiol (1985) ; 121(6): 1272-1281, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27763875

RESUMO

Respiration is produced and controlled by well-characterized brain stem nuclei, but the contributions of spinal circuits to respiratory control and modulation remain under investigation. Many respiratory studies are conducted in in vitro preparations (e.g., brain stem slice) obtained from neonatal rodents. While informative, these studies do not fully recapitulate the complex afferent and efferent neural circuits that are likely to be involved in eupnea (i.e., quiet breathing). To begin to investigate spinal contributions to respiration, we electrically stimulated the cervical spinal cord during unassisted respiration in anesthetized, intact mice. Specifically, we used epidermal electrical stimulation at 20 Hz and varied current intensity to map changes in respiration. Stimulating at 1.5 mA at cervical level 3 (C3) consistently caused a significant increase in respiratory frequency compared with prestimulation baseline and when compared with sham stimulations. The increase in respiratory frequency persisted for several minutes after epidural stimulation ceased. There was no change in tidal volume, and the estimated minute ventilation was increased as a consequence of the increase in respiratory frequency. Sigh frequency also increased during epidural stimulation at C3. Neither the increase in respiratory frequency nor the increase in sighing were observed after stimulation at other dorsal cervical levels. These findings suggest that the spinal circuits involved in the modulation of eupnea and sighing may be preferentially activated by specific endogenous inputs. Moreover, the cervical spinal cord may play a role in respiratory modulation that affects both eupneic respiration and sigh production in intact, adult mice.


Assuntos
Medula Cervical/fisiologia , Mecânica Respiratória/fisiologia , Animais , Estimulação Elétrica/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Respiração , Volume de Ventilação Pulmonar/fisiologia
15.
Anal Chem ; 87(5): 2996-3003, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25627400

RESUMO

Measurements of lactate concentrations in blood and tissues are an important indication of the adequacy of tissue oxygenation and could be useful for monitoring the state and progress of a variety of diseases. This paper describes the fabrication, analytical characterization, and physiological application of an amperometric microbiosensor based on lactate oxidase and oxygen-rich platinum doped ceria (Pt-ceria) nanoparticles for monitoring lactate levels during hypoxic conditions. The Pt-ceria nanoparticles provided electrocatalytic amplification for the detection of the enzymatically produced hydrogen peroxide and acted as an internal oxygen source for the enzyme, enabling lactate monitoring in an oxygen depleted tissue. In vitro evaluation of the biosensor demonstrated high selectivity against physiological levels of ascorbic acid, a storage stability of 3 weeks, a fast response time of 6 s, and good, linear sensitivity over a wide concentration range. In vivo experiments performed by placing the biosensor in the hippocampus of anesthetized rats demonstrated the feasibility of continuous lactate monitoring over 2 h ischemia and reperfusion. The results demonstrate that Pt-ceria is a versatile material for use in implantable enzyme bioelectrodes, which may be used to assess the pathophysiology of tissue hypoxia. In addition to measurements in hypoxic conditions, the detection limit of this biosensor was low, 100 pM, and the materials used to fabricate this biosensor can be particularly useful in ultrasensitive devices for monitoring lactate levels in a variety of conditions.


Assuntos
Técnicas Biossensoriais/métodos , Cério/química , Enzimas Imobilizadas/química , Hipóxia/fisiopatologia , Técnicas In Vitro/métodos , Ácido Láctico/análise , Platina/química , Animais , Encéfalo/metabolismo , Eletroquímica , Hipocampo/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Limite de Detecção , Masculino , Oxigenases de Função Mista/metabolismo , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Reperfusão
16.
ACS Nano ; 7(12): 10582-96, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24266731

RESUMO

Cerium oxide nanoparticles are potent antioxidants, based on their ability to either donate or receive electrons as they alternate between the +3 and +4 valence states. The dual oxidation state of ceria has made it an ideal catalyst in industrial applications, and more recently, nanoceria's efficacy in neutralizing biologically generated free radicals has been explored in biological applications. Here, we report the in vivo characteristics of custom-synthesized cerium oxide nanoparticles (CeNPs) in an animal model of immunological and free-radical mediated oxidative injury leading to neurodegenerative disease. The CeNPs are 2.9 nm in diameter, monodispersed and have a -23.5 mV zeta potential when stabilized with citrate/EDTA. This stabilizer coating resists being 'washed' off in physiological salt solutions, and the CeNPs remain monodispersed for long durations in high ionic strength saline. The plasma half-life of the CeNPs is ∼4.0 h, far longer than previously described, stabilized ceria nanoparticles. When administered intravenously to mice, the CeNPs were well tolerated and taken up by the liver and spleen much less than previous nanoceria formulations. The CeNPs were also able to penetrate the brain, reduce reactive oxygen species levels, and alleviate clinical symptoms and motor deficits in mice with a murine model of multiple sclerosis. Thus, CeNPs may be useful in mitigating tissue damage arising from free radical accumulation in biological systems.


Assuntos
Doenças Autoimunes/prevenção & controle , Encéfalo/efeitos dos fármacos , Cério/química , Portadores de Fármacos , Nanopartículas Metálicas/química , Doenças Neurodegenerativas/prevenção & controle , Animais , Antioxidantes/química , Doenças Autoimunes/tratamento farmacológico , Barreira Hematoencefálica , Modelos Animais de Doenças , Feminino , Radicais Livres , Íons , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Destreza Motora , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/prevenção & controle , Nanomedicina , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Baço/efeitos dos fármacos , Distribuição Tecidual
17.
High Alt Med Biol ; 14(4): 375-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24377345

RESUMO

We examined the functional and morphological characteristics of the liver in rats acclimatized to a simulated altitude of 5500 m. We examined the metabolic activity and cytoplasmic distribution of liver mitochondria and the capacity of the liver to regenerate after partial hepatectomy. Mitochondrial respiration, oxidative phosphorylation, the respiratory control ratio (RCR), and the morphological characteristics of mitochondria in liver sections were studied after 3 months acclimatization to high altitude (HA). Partial hepatectomy was performed in a subset of animals after 30 days acclimatization to 5500 m. The rate of hepatic regeneration, induction of ornithine decarboxylase and uridine diphosphate glucuronyltransferase (UGT1a1), and plasma bilirubin were measured 24, 48, 72, and 96 hours after hepatectomy. Acclimatization to 5500 m did not affect the mitochondrial respiratory capacity or oxidative phosphorylation. The RCR decreased and acid phosphatase activity increased, which suggests that there were subtle changes in mitochondrial integrity. In addition, mitochondria were distributed more homogeneously in hepatocytes. Hepatic regeneration, which was associated with 25-fold induction of the ornithine decarboxylase, did not differ between controls and the altitude-exposed animals. Plasma bilirubin levels rose markedly 24 hours after hepatectomy, but returned to control levels 48 hours after the operation in the altitude-exposed animals. Thus, the remarkable functional capacity of the liver was retained at simulated HA. Redistribution of hepatic mitochondria seems to play an important role in maintaining hepatic function despite severe cellular hypoxia.


Assuntos
Aclimatação/fisiologia , Altitude , Regeneração Hepática/fisiologia , Fígado/fisiologia , Mitocôndrias Hepáticas/fisiologia , Fosfatase Ácida/metabolismo , Animais , Bilirrubina/sangue , Glucuronosiltransferase/metabolismo , Hepatectomia , Fígado/enzimologia , Fígado/cirurgia , Masculino , Mitocôndrias Hepáticas/ultraestrutura , Ornitina Descarboxilase/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Sprague-Dawley
18.
PLoS One ; 7(9): e43945, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984455

RESUMO

To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order of 100 ms or less. Our computations of correlation functions were restricted to the [Formula: see text] spectral range (13-30 Hz) of EEG signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were strong if both channels were located over the left or right hemispheres, and 2-3 times weaker if the EEG channels were located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may reduce the correlation between EEG and EMG signals.


Assuntos
Córtex Cerebral/fisiologia , Escrita Manual , Neurônios/fisiologia , Estatística como Assunto , Cor , Eletrodos , Eletroencefalografia , Eletromiografia , Humanos , Probabilidade , Processamento de Sinais Assistido por Computador , Propriedades de Superfície , Fatores de Tempo
19.
J Appl Physiol (1985) ; 113(10): 1585-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22936722

RESUMO

We hypothesized that absence of the 5-HT(1A) receptor would negatively affect the development of cardiorespiratory control. In conscious wild type (WT) and 5-HT(1A) receptor knockout (KO) mice, we measured resting ventilation (Ve), oxygen consumption (Vo(2)), heart rate (HR), breathing and HR variability, and the hypercapnic ventilatory response (HCVR) at postnatal day 5 (P5), day 15 (P15), and day 25 (P25). In KO mice compared with WT, we found a 17% decrease in body weight at only P5 (P < 0.01) and no effect on Vo(2). Ve was significantly (P < 0.001) lower at P5 and P25, but there was no effect on the HCVR. Breathing variability (interbreath interval), measured by standard deviation, the root mean square of the standard deviation (RMSSD), and the product of the major (L) and minor axes (T) of the Poincaré first return plot, was 57% to 187% higher only at P5 (P < 0.001). HR was 6-10% slower at P5 (P < 0.001) but 7-9% faster at P25 (P < 0.001). This correlated with changes in the spectral analysis of HR variability; the low frequency to high frequency ratio was 47% lower at P5 but 68% greater at P25. The RMSSD and (L × T) of HR variability were ~2-fold greater at P5 only (P < 0.001; P < 0.05). We conclude that 5-HT(1A) KO mice have a critical period of potential vulnerability at P5 when pups hypoventilate and have a slower respiratory frequency and HR with enhanced variability of both, suggesting abnormal maturation of cardiorespiratory control.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Tronco Encefálico/metabolismo , Frequência Cardíaca , Coração/inervação , Pulmão/inervação , Receptor 5-HT1A de Serotonina/deficiência , Respiração , Taxa Respiratória , Animais , Animais Recém-Nascidos , Sistema Nervoso Autônomo/fisiopatologia , Peso Corporal , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Tronco Encefálico/fisiopatologia , Metabolismo Energético , Feminino , Genótipo , Frequência Cardíaca/genética , Humanos , Hipercapnia/genética , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hiperventilação/genética , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Consumo de Oxigênio , Fenótipo , Ventilação Pulmonar , Receptor 5-HT1A de Serotonina/genética , Respiração/genética , Taxa Respiratória/genética , Morte Súbita do Lactente/genética
20.
Compr Physiol ; 2(2): 1387-415, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23798304

RESUMO

Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments.


Assuntos
Geradores de Padrão Central/fisiologia , Mecânica Respiratória/fisiologia , Animais , Sistema Nervoso Central/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Fenômenos Fisiológicos Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA