Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534642

RESUMO

Previously, we reported that metronidazole MICs are not dependent on the expression levels of nim genes in B. fragilis strains and we compared the proteomes of metronidazole-resistant laboratory B. fragilis strains to those of their susceptible parent strains. Here, we used RT-qPCR to correlate the expression levels of 18 candidate genes in a panel of selected, clinical nim gene-positive and -negative B. fragilis strains to their metronidazole MICs. Metronidazole MICs were correlated with the expression of certain tested genes. Specifically, lactate dehydrogenase expression correlated positively, whereas cytochrome fumarate reductase/succinate dehydrogenase, malate dehydrogenase, phosphoglycerate kinase redox and gat (GCN5-like acetyltransferase), and relA (stringent response) regulatory gene expressions correlated negatively with metronidazole MICs. This result provides evidence for the involvement of carbohydrate catabolic enzymes in metronidazole resistance in B. fragilis. This result was supported by direct substrate utilization tests. However, the exact roles of these genes/proteins should be determined in deletion-complementation tests. Moreover, the exact redox cofactor(s) participating in metronidazole activation need to be identified.

2.
ACS Omega ; 9(8): 9782-9791, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434803

RESUMO

Bottom-up proteomic approaches depend on the efficient digestion of proteins into peptides for mass spectrometric analysis. Sample preparation strategies, based on magnetic beads, filter-aided systems, or in-solution digests, are commonly used for proteomic analysis. Time-intensive methods like filter-aided sample preparation (FASP) have led to the development of new, more time-efficient filter-based strategies like suspension trappings (S-Traps) or magnetic bead-based strategies like SP3. S-Traps have been reported as an alternative proteomic sample preparation method as they allow for high sodium dodecyl sulfate (SDS) concentrations to be present in the sample. In this study, we compare the efficiency of different protocols for FASP, SP3, and S-Trap-based digestion of proteins after extraction from Trichomonas vaginalis. Overall, we found a high number of protein IDs for all tested methods and a high degree of reproducibility within each method type. However, FASP with a 3 kDa cutoff filter unit outperformed the other methods analyzed, referring to the number of protein IDs. This is the first work providing the direct comparison of four different bottom-up proteomic approaches regarding the most efficient proteomic sample preparation protocol for the human parasite T. vaginalis.

3.
Anaerobe ; 81: 102739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209770

RESUMO

In this study we examined whether the same nim gene-insertion sequence (IS) element combinations give rise to the same expression levels as they harbor shared IS element-borne promoters. From our quantitative analysis, we found that the expressions of the nimB and nimE genes with their cognate IS elements were similar, but the metronidazole resistance of these strains were more diverse.


Assuntos
Infecções Bacterianas , Infecções por Bacteroides , Humanos , Metronidazol/farmacologia , Bacteroides fragilis/genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Genes Bacterianos , Antibacterianos/farmacologia
4.
Front Microbiol ; 14: 1158086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065137

RESUMO

The anaerobic gut bacteria and opportunistic pathogen Bacteroides fragilis can cause life-threatening infections when leaving its niche and reaching body sites outside of the gut. The antimicrobial metronidazole is a mainstay in the treatment of anaerobic infections and also highly effective against Bacteroides spp. Although resistance rates have remained low in general, metronidazole resistance does occur in B. fragilis and can favor fatal disease outcomes. Most metronidazole-resistant Bacteroides isolates harbor nim genes, commonly believed to encode for nitroreductases which deactivate metronidazole. Recent research, however, suggests that the mode of resistance mediated by Nim proteins might be more complex than anticipated because they affect the cellular metabolism, e.g., by increasing the activity of pyruvate:ferredoxin oxidoreductase (PFOR). Moreover, although nim genes confer only low-level metronidazole resistance to Bacteroides, high-level resistance can be much easier induced in the laboratory in the presence of a nim gene than without. Due to these observations, we hypothesized that nim genes might induce changes in the B. fragilis proteome and performed comparative mass-spectrometric analyses with B. fragilis 638R, either with or without the nimA gene. Further, we compared protein expression profiles in both strains after induction of high-level metronidazole resistance. Interestingly, only few proteins were repeatedly found to be differentially expressed in strain 638R with the nimA gene, one of them being the flavodiiron protein FprA, an enzyme involved in oxygen scavenging. After induction of metronidazole resistance, a far higher number of proteins were found to be differentially expressed in 638R without nimA than in 638R with nimA. In the former, factors for the import of hemin were strongly downregulated, indicating impaired iron import, whereas in the latter, the observed changes were not only less numerous but also less specific. Both resistant strains, however, displayed a reduced capability of scavenging oxygen. Susceptibility to metronidazole could be widely restored in resistant 638R without nimA by supplementing growth media with ferrous iron sulfate, but not so in resistant 638R with the nimA gene. Finally, based on the results of this study, we present a novel hypothetic model of metronidazole resistance and NimA function.

5.
Anaerobe ; 77: 102630, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028117

RESUMO

OBJECTIVES: In the genus Bacteroides, the nim genes are resistance determinants for metronidazole, a nitroimidazole drug widely used against anaerobic pathogens. The Nim proteins are considered to act as nitroreductases. However, data from several studies suggest that the expression levels of Nim do not increase with increasing resistance which is conflicting with this notion. The impact of Nim protein levels on low-level metronidazole resistance, however, representing the early stage of induced resistance in the laboratory, has not been assessed as yet. METHODS: The nimA gene was cloned into two different plasmids and introduced into B. fragilis strain 638R. Expression levels of nimA mRNA were measured by RT-qPCR and compared to those in strain 638R harbouring plasmid pI417, the original clinical plasmid harbouring IS element IS1168 with the nimA gene. Further, metronidazole susceptibility was assessed by Etest and the activity of pyruvate:ferredoxin oxidoreductase (PFOR) was measured in all strains after induction of high-level metronidazole resistance. RESULTS: The level of protection against metronidazole by nimA correleated with the level of expression of nimA mRNA. Further, the activity of PFOR in highly-resistant B. fragilis 638R was only preserved when expression levels of nimA were high. CONCLUSIONS: Although the development of high-level metronidazole resistance in B. fragilis strains with a nimA gene is not caused by an increase of nimA expression as compared to the less resistant parent strains, nimA expression levels might be of decisive importance in the early stage of resistance development. This has potential implications for metronidazole resistance in clinical isolates.


Assuntos
Infecções Bacterianas , Metronidazol , Humanos , Metronidazol/farmacologia , Bacteroides fragilis/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Genes Bacterianos , RNA Mensageiro , Antibacterianos/farmacologia
6.
Front Microbiol ; 13: 898453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756037

RESUMO

Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell.

7.
Parasite ; 29: 24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35532265

RESUMO

The thioredoxin (Trx) and the glutathione (GSH) systems represent important antioxidant systems in cells and in particular thioredoxin reductase (TrxR) has been shown to constitute a promising drug target in parasites. For the facultative protozoal pathogen Acanthamoeba, it was demonstrated that a bacterial TrxR as well as a TrxR, characteristic of higher eukaryotes, mammals and humans is expressed on the protein level. However, only bacterial TrxR is strongly induced by oxidative stress in Acanthamoeba castellanii. In this study, the impact of oxidative stress on key enzymes involved in the thioredoxin and the glutathione system of A. castellanii under different culture conditions and of clinical Acanthamoeba isolates was evaluated on the RNA level employing RT-qPCR. Additionally, the effect of auranofin, a thioredoxin reductase inhibitor, already established as a potential drug in other parasites, on target enzymes in A. castellanii was investigated. Oxidative stress induced by hydrogen peroxide led to significant stimulation of bacterial TrxR and thioredoxin, while diamide had a strong impact on all investigated enzymes. Different strains displayed distinct transcriptional responses, rather correlating to sensitivity against the respective stressor than to respective pathogenic potential. Culture conditions appear to have a major effect on transcriptional changes in A. castellanii. Treatment with auranofin led to transcriptional activation of the GSH system, indicating its role as a potential backup for the Trx system. Altogether, our data provide more profound insights into the complex redox system of Acanthamoeba, preparing the ground for further investigations on this topic.


Title: Modifications transcriptionnelles des protéines des système thiorédoxine et glutathion chez Acanthamoeba spp. sous stress oxydatif ­ une approche par l'ARN. Abstract: Les systèmes de la thiorédoxine (Trx) et du glutathion (GSH) représentent des systèmes antioxydants importants dans les cellules et, en particulier, la thiorédoxine réductase (TrxR) s'est avérée constituer une cible médicamenteuse prometteuse chez les parasites. Pour le pathogène protozoaire facultatif Acanthamoeba, il a été démontré qu'une TrxR bactérienne ainsi qu'une TrxR, caractéristique des eucaryotes supérieurs, des mammifères et des humains, s'expriment au niveau protéique. Cependant, seule la TrxR bactérienne est fortement induite par le stress oxydatif chez Acanthamoeba castellanii. Dans cette étude, l'impact du stress oxydatif sur les enzymes clés impliquées dans la thiorédoxine et le système glutathion d'A. castellanii dans différentes conditions de culture et d'isolats cliniques d'Acanthamoeba a été évalué au niveau de l'ARN en utilisant la RT-qPCR. De plus, l'effet de l'auranofine, un inhibiteur de la thiorédoxine réductase déjà établi comme médicament potentiel chez d'autres parasites, a été étudié sur les enzymes cibles chez A. castellanii. Le stress oxydatif induit par le peroxyde d'hydrogène a conduit à une stimulation significative du TrxR bactérien et de la thiorédoxine tandis que le diamide a eu un fort impact sur toutes les enzymes étudiées. Différentes souches ont affiché des réponses transcriptionnelles distinctes, plutôt corrélées à la sensibilité contre le facteur de stress respectif qu'à leur potentiel pathogène respectif. Les conditions de culture semblent avoir un effet majeur sur les changements transcriptionnels chez A. castellanii. Le traitement à l'auranofine a conduit à une activation transcriptionnelle du système GSH, indiquant son rôle de sauvegarde potentielle pour le système Trx. Dans l'ensemble, nos données fournissent des informations plus approfondies sur le système redox complexe d'Acanthamoeba, préparant le terrain pour de nouvelles investigations sur ce sujet.


Assuntos
Acanthamoeba , Tiorredoxina Dissulfeto Redutase , Acanthamoeba/genética , Auranofina/farmacologia , Glutationa , Estresse Oxidativo , RNA , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
8.
Anaerobe ; 73: 102507, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979246

RESUMO

OBJECTIVES: Bacteroides fragilis has a pronounced ability to survive prolonged exposure to atmospheric oxygen. The major objective of this study was to biochemically characterize the components of the thioredoxin system in B. fragilis. The nitroreductase activity of TrxR was also assayed. METHODS: Components of the thioredoxin system were expressed in E. coli and used in a disulfide reductase activity assay. Activity of TrxR was measured with purified recombinant enzyme or with cell extracts after or without exposure to oxygen or hydrogen peroxide, respectively. RESULTS: Of all six thioredoxins tested, only thioredoxins A, D, and F were reduced by recombinant TrxR and natural TrxR present in B. fragilis cell extracts. Exposure to oxygen and hydrogen peroxide increased the activity of TrxR. Further, B. fragilis TrxR acts as a nitroreductase with furazolidone or 1-Chloro-2,4-dinitrobenzene as substrates but cannot reduce metronidazole. CONCLUSION: TrxR shows an increase in activity under the conditions of oxidative stress and exerts nitroreductase activity.


Assuntos
Bacteroides fragilis , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase , Bacteroides fragilis/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
9.
J Antimicrob Chemother ; 77(4): 1027-1031, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35040989

RESUMO

BACKGROUND: Infections with Bacteroides fragilis are routinely treated with metronidazole, a 5-nitroimidazole antibiotic that is active against most anaerobic microorganisms. Metronidazole has remained a reliable treatment option, but resistance does occur, including in B. fragilis. OBJECTIVES: In this study we tested whether haemin, a growth supplement for B. fragilis in vivo and in vitro, had an influence on the susceptibility of resistant B. fragilis strains to metronidazole. We further tested whether haemin-deprived B. fragilis would be more susceptible to oxygen and oxidative stress. Metronidazole has been described to cause oxidative stress, which we argued would be exacerbated in haemin-deprived B. fragilis because the bacteria harness haemin, and the iron released from it, in antioxidant enzymes such as catalase and superoxide dismutase. METHODS: Haemin was omitted from growth media and the effect on metronidazole susceptibility was monitored in susceptible and resistant B. fragilis strains. Further, haemin-deprived B. fragilis were tested for resistance to aeration and hydrogen peroxide and the capacity for the removal of oxygen. RESULTS: Omission of haemin from the growth medium rendered metronidazole-resistant B. fragilis strains, including an MDR isolate from the UK, highly susceptible to metronidazole. Haemin deprivation further rendered B. fragilis highly susceptible to oxygen, which was further exacerbated in resistant strains. B. fragilis was incapable of scavenging oxygen when haemin was omitted. CONCLUSIONS: We propose that haemin deprivation overrules resistance mechanisms by rendering B. fragilis hypersusceptible to metronidazole due to a compromised antioxidant defence. Monitoring of haemin concentrations is imperative when conducting metronidazole susceptibility testing in B. fragilis.


Assuntos
Infecções Bacterianas , Infecções por Bacteroides , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções por Bacteroides/tratamento farmacológico , Infecções por Bacteroides/microbiologia , Bacteroides fragilis , Humanos , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana
10.
Int J Antimicrob Agents ; 58(5): 106425, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34419578

RESUMO

Acanthamoebae are opportunistic pathogens that cause serious infections, including Acanthamoeba keratitis, a sight-threatening disease affecting mainly contact lens wearers, and granulomatous amoebic encephalitis, an infection of the central nervous system that occurs mostly in immunocompromised individuals. Although these infections are rare, they are a challenge for healthcare providers. In the last decade, the search for and implementation of novel treatment approaches against these parasites and the infections they cause have intensified, but current options are still unsatisfactory. The aim of this study was to investigate the in vitro activity of the gold-based compound auranofin against Acanthamoeba spp. The study showed that auranofin has potent antimicrobial activity against Acanthamoeba spp., with an IC50 ranging from 2.9 to 3.48 µM, and thus may be useful in the prevention and control of Acanthamoeba infections.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebíase/tratamento farmacológico , Antiparasitários/farmacologia , Auranofina/farmacologia , Acanthamoeba/crescimento & desenvolvimento , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Amebíase/parasitologia , Encefalite/tratamento farmacológico , Encefalite/parasitologia , Humanos , Testes de Sensibilidade Parasitária
11.
Artigo em Inglês | MEDLINE | ID: mdl-33962363

RESUMO

Trichomonads are an order of parasitic protists which infect a wide range of hosts. The human parasite Trichomonas vaginalis and the bovine parasite Tritrichomonas foetus which also infects cats and swine are of considerable medical and veterinary importance, respectively. Since trichomonads are microaerophiles/anaerobes they are susceptible to 5-nitroimidazoles such as metronidazole. 5-nitroimidazoles are exclusively toxic to microaerophilic/anaerobic organisms because reduction, i.e. activation, of the drug can only occur in a highly reductive environment. 5-nitroimidazoles have remained a reliable treatment option throughout the last decades but drug resistance can be a problem. Clinical resistance to 5-nitroimidazoles has been studied in more detail in T. vaginalis and has been ascribed to defective oxygen scavenging mechanisms which lead to higher intracellular oxygen concentrations and, consequently, to less drug being reduced. Two enzymes, flavin reductase (FR) and NADH oxidase have been suggested to be the major oxygen scavenging enzymes in T. vaginalis. The loss, or at least an impairment of FR which reduces oxygen to hydrogen peroxide, has been proposed as the central mechanism that enables the emergence of 5-nitroimidazole resistance. In this study we explored if T. foetus also encodes a homolog of FR and if it is, likewise, involved in resistance. T. foetus was indeed found to express a FR but it was only weakly active as compared to the T. vaginalis homolog. Further, activity of FR in T. foetus was unchanged in metronidazole-resistant cell lines, ruling out that it has a role in metronidazole resistance. Finally, we measured oxygen scavenging rates in metronidazole-sensitive and -resistant cell lines and found that NADH oxidase and FR are not the major oxygen scavenging enzymes in trichomonads and that oxygen scavenging is possibly a consequence, rather than a cause of metronidazole resistance.


Assuntos
Metronidazol , Trichomonas vaginalis , Animais , Gatos , Bovinos , Resistência a Medicamentos , Metronidazol/farmacologia , Oxigênio , Suínos , Trichomonas vaginalis/genética
12.
Fac Rev ; 10: 26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718943

RESUMO

Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.

13.
Anaerobe ; 69: 102357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713801

RESUMO

Eleven metronidazole resistant Bacteroides and one newly classified Phocaeicola dorei strain from Kuwait were investigated for their resistance mechanisms and the emergence of their resistant plasmids. All but one strain harbored nimE genes on differently sized plasmids. Of the 11 nimE genes, 9 were preceded by full copies of the prototype ISBf6 insertion sequence element, one carried a truncated ISBf6 and one was activated by an additional copy of IS612B. Nucleotide sequencing results showed that the nimE ISBf6 distances were constant and all five different plasmids shared a common region, suggesting that (i) the nimE-ISBf6 configuration was inserted into an undisclosed common genetic element, (ii) over time, this common element was mutated by insertions and deletions, spreading the resultant plasmids. Of the 10 B. fragilis strains in this collection, 6 were also cfiA-positive, one with full imipenem resistance, indicating a tendency for multidrug resistance (MDR) among such isolates. The significant number of metronidazole resistant Bacteroides spp. and P. dorei strains with the MDR phenotype warns of difficulties in treatment and suggests promoting adherence to antibiotic stewardship recommendations in Kuwait.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Bacteroides/tratamento farmacológico , Bacteroides/efeitos dos fármacos , Bacteroides/genética , Farmacorresistência Bacteriana/genética , Metronidazol/uso terapêutico , Variação Genética , Genótipo , Humanos , Kuweit , Testes de Sensibilidade Microbiana
14.
Malar J ; 20(1): 121, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639949

RESUMO

BACKGROUND: The use of highly sensitive molecular tools in malaria diagnosis is currently largely restricted to research and epidemiological settings, but will ultimately be essential during elimination and potentially eradication. Accurate diagnosis and differentiation down to species levels, including the two Plasmodium ovale species and zoonotic variants of the disease, will be important for the understanding of changing epidemiological patterns of the disease. METHODS: A qPCR-high resolution melting (HRM) method was to detect and differentiate all human Plasmodium species with one forward and one reverse primer set. The HRM detection method was further refined using a hydrolysis probe to specifically discriminate Plasmodium falciparum. RESULTS: Out of the 113 samples tested with the developed HRM-qPCR- P. falciparum probe assay, 96 (85.0 %) single infections, 12 (10.6 %) mixed infections, and 5 (4.4 %) were Plasmodium negative. The results were concordant with those of the nested PCR at 98.2 %. The assay limit of detection was varied from 21.47 to 46.43 copies /µl, equivalent to 1-2.11 parasites/µl. All P. falciparum infections were confirmed with the associated Taqman probe. CONCLUSIONS: Although the dependence on qPCR currently limits its deployment in resource-limited environments, this assay is highly sensitive and specific, easy to perform and convenient for Plasmodium mono-infection and may provide a novel tool for rapid and accurate malaria diagnosis also in epidemiological studies.


Assuntos
DNA de Protozoário/análise , Desnaturação de Ácido Nucleico , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Plasmodium/classificação
15.
Cell Mol Life Sci ; 78(7): 3673-3689, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33599799

RESUMO

The free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii's response to oxidative stress. The role of the large TrxR, however, remains elusive.


Assuntos
Acanthamoeba castellanii/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/metabolismo , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Acanthamoeba castellanii/crescimento & desenvolvimento , Antioxidantes , Humanos , Oxirredução
16.
Gut Pathog ; 12: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514315

RESUMO

BACKGROUND: Intestinal parasitic diseases occur worldwide, and their diagnosis poses considerable challenges. Cryptosporidium spp., Entamoeba histolytica, Giardia intestinalis, (and, arguably, Dientamoeba fragilis and Blastocystis spp.) are among the most important and common parasitic protozoans causing diarrhea. Several multiplex real-time PCR assays have been developed for the synchronous detection of these parasites. However, most assays include the use of hydrolysis probes, increasing the cost of stool examination. In this study, we designed and evaluated a real-time PCR protocol, based on high-resolution melting (HRM) curve analysis, to simultaneously detect and differentiate five gastrointestinal parasites. RESULTS: Using a blinded panel of 143 clinical samples with laboratory diagnostic data to evaluate the method, we obtained a 95.8% concordance with conventional methods. Moreover, 4.2% of the samples were positive for D. fragilis and 2.8% additional Cryptosporidium infections were found with our multiplex assay. Our method is sensitive and specific for the selected parasites with the additional possibility of being run in single-plex as a backup control for mixed infections. CONCLUSIONS: The assay is a convenient and cost-effective method that could contribute to a quicker and accurate diagnosis as well as to more targeted therapies of parasite-derived diarrhea. Finally, this new multiplex PCR assay could also be instrumental in epidemiology studies on these parasites.

17.
Sci Rep ; 10(1): 10362, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587282

RESUMO

Acanthamoebae are potentially pathogenic organisms, with a highly unique, yet still insufficiently investigated metabolism. Many open questions can be addressed by gene expression studies, however, for Acanthamoeba reliable standards have not yet been established. In this study, suitable reference genes (RGs) for RT-qPCR in Acanthamoeba were comprehensively evaluated, comparing different Acanthamoeba strains and employing four different algorithms (NormFinder, GeNorm, BestKeeper and RefFinder). Expression stability was assessed under various conditions and the potentials of the most promising RGs for accurate normalization of target genes were evaluated. Expression stability of RGs varied depending on conditions and employed algorithms, however, the genes for the 18S rRNA and the hypoxanthine phosphoribosyl transferase seem to be widely suitable RGs. Normalization with a combination of two carefully chosen RGs resulted in reliable expression data for target genes, while normalization with unsuitable RGs led to significant misinterpretation of expression profiles. Thus, a careful evaluation of RGs prior to expression studies is essential.


Assuntos
Acanthamoeba/genética , Algoritmos , Perfilação da Expressão Gênica , RNA Ribossômico 18S/análise , Reação em Cadeia da Polimerase em Tempo Real/normas , Acanthamoeba/metabolismo , RNA Ribossômico 18S/genética , Padrões de Referência
18.
Adv Parasitol ; 107: 201-282, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32122530

RESUMO

The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.


Assuntos
Resistência a Medicamentos , Giardíase/tratamento farmacológico , Terapias Complementares/tendências , Biologia Computacional/tendências , Descoberta de Drogas/tendências , Giardíase/terapia , Humanos
19.
Metabolites ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019059

RESUMO

Giardia lamblia, a causative agent of persistent diarrhea in humans, domestic animals, and cattle, is usually treated with nitro compounds. Consequently, enzymes involved in anaerobic nitro reduction have been investigated in detail as potential targets. Their role within the normal metabolic context is, however, not understood. Using 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, we analyzed the metabolomes of G. lamblia trophozoites overexpressing three nitroreductases (NR1-NR3) and thioredoxin reductase (TrxR), most likely a scavenger of reactive oxygen species, as suggested by the results published in this study. We compared the patterns to convenient controls and to the situation in the nitro drug resistant strain C4 where NR1 is downregulated. We identified 27 metabolites in G. lamblia trophozoites. Excluding metabolites of high variability among different wildtype populations, only trophozoites overexpressing NR1 presented a distinct pattern of nine metabolites, in particular arginine catabolites, differing from the respective controls. This pattern matched a differential pattern between wildtype and strain C4. This suggests that NR1 interferes with arginine and thus energy metabolism. The exact metabolic function of NR1 (and the other nitroreductases) remains to be elucidated.

20.
Parasitol Res ; 119(2): 683-686, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853623

RESUMO

The microaerophilic human parasite Trichomonas vaginalis causes infections in the urogenital tract and is one of the most often sexually transmitted pathogens worldwide. Due to its anaerobic metabolism, it has to quickly remove intracellular oxygen in order to avoid deactivation of essential metabolic enzymes such as oxygen-sensitive pyruvate:ferredoxin oxidoreductase (PFOR). Two major enzyme activities which are responsible for the removal, i.e. reduction, of molecular oxygen have been identified in T. vaginalis flavin reductase, formerly designated NADPH oxidase, which indirectly reduces oxygen to hydrogen peroxide via flavin mononucleotide (FMN), and NADH oxidase which reduces oxygen to water. Flavin reductase has been identified and characterized at the gene level as well as enzymatically, but NADH oxidase has so far only been characterized enzymatically with enzyme isolated from T. vaginalis cell extracts. In this study, we identified NADH oxidase by mass spectrometry after isolation of the enzyme from gel bands positively staining for NADH oxidase activity. In strain C1 (ATCC 30001) which is known to lack NADH oxidase activity completely, the NADH oxidase gene has a deletion at position 1540 of the open reading frame leading to a frame shift and, as a consequence, to premature termination of the encoded polypeptide.


Assuntos
Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/genética , Espectrometria de Massas , Complexos Multienzimáticos/química , Complexos Multienzimáticos/isolamento & purificação , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/isolamento & purificação , Fases de Leitura Aberta/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA