Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049194

RESUMO

In recent years, a dynamic increase in environmental pollution with textile waste has been observed. Natural textile waste has great potential for environmental applications. This work identifies potential ways of sustainably managing natural textile waste, which is problematic waste from sheep farming or the cultivation of fibrous plants. On the basis of textile waste, an innovative technology was developed to support water saving and plant vegetation- biodegradable water-absorbing geocomposites (BioWAGs). The major objective of this study was to determine BioWAG effectiveness under field conditions. The paper analyses the effect of BioWAGs on the increments in fresh and dry matter, the development of the root system, and the relative water content (RWC) of selected grass species. The conducted research confirmed the high efficiency of the developed technology. The BioWAGs increased the fresh mass of grass shoots by 230-420% and the root system by 130-200% compared with the control group. The study proved that BioWAGs are a highly effective technology that supports plant vegetation and saves water. Thanks to the reuse of waste materials, the developed technology is compatible with the assumptions of the circular economy and the goals of sustainable development.

2.
Materials (Basel) ; 15(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806598

RESUMO

Water uptake dynamics of superabsorbent polymers (SAP) in soil is of key importance for the optimum application of these materials in environmental engineering and agriculture, so goal of this paper is to determine time dependent values of coefficient of permeability for various SAP-soil mixtures. Retaining water in soil is a key requirement in critical zones to support plant growth. There is an urgent need for technologies that can increase soil water retention, given the increasing prevalence of droughts and scarcity of clean water as the climate changes, combined with the rising demand for food by a growing world population. SAPs are materials that can absorb significant amounts of water, and thus have tremendous potential to help increase water retention in soil. However, while some studies have characterized the equilibrium swelling behavior of SAPs in soil, how their addition influences the time-dependent flow of water through soil remains poorly understood. Here, we address this gap in knowledge by directly measuring the coefficient of permeability of SAP-soil mixtures, testing different soil grain sizes, SAP grain sizes, and different SAP-soil ratios. We find that SAP addition can dramatically hinder the flow rate of water through soil-reducing the permeability by several orders of magnitude, and in some cases causing complete blockage of water infiltration, at mass fractions as small as 1%. In this scenario coefficient of permeability of 1.23 × 10-4 m/s dropped by a factor of ~10 after 14 min, a factor of ~100 after 36 min, and by nearly a factor of ~1000 after 63 min, eventually causing complete blockage of infiltration after 67 min. Authors concluded that in this particular situation the size and quantity of SAP particles was enough to nearly completely fill the available pore space resulting in rendering the soil column almost completely impermeable. Moreover, we demonstrate that these effects are well-described by a simple hydraulic model of the mutual interactions between SAP and soil grains, providing more generally-applicable and quantitative principles to model SAP-soil permeability in applications. Ultimately, this work could help evaluate the optimal proportions and grain sizes of SAPs to use for a given soil to simultaneously achieve a desirable permeability along with increased water holding capacity in the plant root zone.

3.
Sci Total Environ ; 844: 157169, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798103

RESUMO

Human activity is accompanied by the introduction of excessive amounts of artificial materials, including geosynthetics, into the environment, causing global environmental pollution. Moreover, climate change continues to negatively affect global water resources. With the intensification of environmental problems, material reusability and water consumption limitations have been proposed. This study replaced synthetic soil additives with biodegradable materials and analysed the potential and sustainable processing of natural fibrous materials, which form problematic waste. Waste fibres are the basis of innovative soil water storage technologies in the form of biodegradable and water-absorbing geocomposites (BioWAG). We analysed the influence of BioWAGs on plant vegetation and the environment through a three-year field experiment. Furthermore, biomass increases, drought effect reductions, and biodegradation mechanisms were analysed. Natural waste fibres had a positive influence, as they released easily accessible nutrients into the soil during biodegradation. BioWAGs had a positive influence on the biometric parameters of grass, increasing biomass growth by 430 %. Our results indicated that this is an effective method of waste fibre management that offers the possibility to manufacture innovative, environmentally friendly materials in compliance with the objectives of circular economy and the expectations of users.


Assuntos
Solo , Gerenciamento de Resíduos , Biodegradação Ambiental , Biomassa , Humanos , Águas Residuárias , Água
4.
Materials (Basel) ; 13(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182827

RESUMO

Superabsorbent polymers (SAPs) are used in agriculture and environmental engineering to increase soil water retention. Under such conditions, the swelling pressure of the SAP in soil affects water absorption by SAP, and soil structure. The paper presents the results of swelling pressure of three cross-linked copolymers of acrylamide and potassium acrylate mixed at the ratios of 0.3%, 0.5% and 1.0% with coarse sand and loamy sand. The highest values of swelling pressure were obtained for the 1% proportion, for coarse sand (79.53 kPa) and loamy sand (78.23 kPa). The time required to reach 90% of swelling pressure for each type of SAP differs. Samples of coarse sand mixed with SAP K2 in all concentrations reached 90% of total swelling pressure in 100 min, while the loamy sand mixtures needed only about 60 min. The results were the basis for developing a model for swelling pressure of the superabsorbent and soil mixtures, which is a fully stochastic model. The conducted research demonstrated that the course of pressure increase depends on the available pore capacity and the grain size distribution of SAPs. The obtained results and the proposed model may be applied everywhere where mixtures of SAPs and soils are used to improve plant vegetation conditions.

5.
Sci Rep ; 9(1): 18098, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792322

RESUMO

Various applications of superabsorbent polymers (SAP) include the use of these materials in agriculture and environmental engineering to increase soil water retention. Under such conditions, there is water absorption of the SAP in soil under load. This paper presents the results of absorbency under load (AUL) of a cross-linked copolymer of acrylamide and potassium acrylate mixed at ratios of 0.3%, 0.5% and 1.0% with coarse sand and sandy loam. The mixtures were subjected to loads equivalent to 10, 20 and 40 cm of soil. The highest differences in AUL values for both soils, compared to the control sample, were obtained after 24 hours and at a maximum load of 5.9 kPa, which corresponds to a load of a 40 cm thick topsoil layer. The AUL was 71.4 g∙g-1 for coarse sand and 52.7 g∙g-1 for sandy loam with a 1.0% SAP addition, which corresponded to 24.0% and 18.0%, respectively, of the absorption in the control sample. All the conducted tests revealed a significantly low rate of water absorbency, which is especially important for capturing the water that infiltrates into the soil profile. The results demonstrate that water absorption by SAPs decreased with the increase in SAP addition.

6.
Polymers (Basel) ; 10(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30966306

RESUMO

One of the most important among the numerous applications of superabsorbent polymers (SAPs), also known as hydrogels, is soil improvement and supporting plant vegetation in agriculture and environmental engineering. Currently, when water scarcity involves water stress, they are becoming still more commonly used for water retention in soil. As it turns out, one of the major factors influencing the superabsorbent polymers water retention capacity (WRC) is the load of soil. The study presents test results of absorbency under load (AUL) of SAPs. The object of the analysis was cross-linked copolymer of acrylamide and potassium acrylate, of a granulation of 0.50⁻3.15 mm. The authors analysed the water absorption capacity of the superabsorbent polymers under loads characteristic for 3 different densities of soil (1.3 g∙cm-3, 0.9 g∙cm-3, 0.5 g∙cm-3) and three different depths of application (10 cm, 20 cm, and 30 cm). Soil load and bulk densities were simulated by using weights. The experiments were conducted with a Mecmesin Multitest 2.5-xt apparatus. The obtained results demonstrate a very significant reduction in water absorption capacity by SAP under load. For a 30 cm deep layer of soil of bulk density of 1.3 g∙cm-3, after 1 h, this value amounted to 5.0 g∙g-1, and for the control sample without load, this value amounted to more than 200 g∙g-1. For the lowest load in the experiment, which was 0.49 kPa (10 cm deep layer of soil of a bulk density of 0.5 g∙cm-3), this value was 33.0 g∙g-1 after 60 min. Loads do not only limit the volume of the swelling superabsorbent polymer but they also prolong the swelling time. The soil load caused a decrease in the absorption capacity from 338.5 g∙g-1 to 19.3 g∙g-1, as well as a prolongation of the swelling time. The rate parameter (time required to reach 63% of maximum absorption capacity) increased from 63 min for the control sample to more than 300 min for the largest analysed load of 3.83 kPa. The implications of soil load on superabsorbent polymer swelling are crucial for its usage and thus for the soil system. This knowledge might be employed for the more effective usage of superabsorbent polymers in agriculture and environmental engineering, in which they are commonly used to retain water and to support plant growth.

7.
Environ Sci Pollut Res Int ; 23(6): 5969-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26817471

RESUMO

Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21-7.49 log10 cfu g(-1) of water absorbed by the SAP and decreased by 1.35-1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk's salt medium, and biodegradation activity was equal to 2.95 and 6.72 µg of SAP µg(-1) of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.


Assuntos
Acrilamida/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Potássio/metabolismo , Microbiologia do Solo , Bacillus/metabolismo , Carbono/metabolismo , Raízes de Plantas/metabolismo , Polímeros/química , Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA