Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Radiol ; 34(8): 4988-5006, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38319428

RESUMO

OBJECTIVES: This study aimed to externally validate the Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) recommendations for differentiation/follow-up of central cartilage tumours (CCTs) of the proximal humerus, distal femur, and proximal tibia and to propose BACTIP adaptations if the results provide new insights. METHODS: MRIs of 123 patients (45 ± 11 years, 37 men) with an untreated CCT with MRI follow-up (n = 62) or histopathological confirmation (n = 61) were retrospectively/consecutively included and categorised following the BACTIP (2003-2020 / Ghent University Hospital/Belgium). Tumour length and endosteal scalloping differences between enchondroma, atypical cartilaginous tumour (ACT), and high-grade chondrosarcoma (CS II/III/dedifferentiated) were evaluated. ROC-curve analysis for differentiating benign from malignant CCTs and for evaluating the BACTIP was performed. RESULTS: For lesion length and endosteal scalloping, ROC-AUCs were poor and fair-excellent, respectively, for differentiating different CCT groups (0.59-0.69 versus 0.73-0.91). The diagnostic performance of endosteal scalloping and the BACTIP was higher than that of lesion length. A 1° endosteal scalloping cut-off differentiated enchondroma from ACT + high-grade chondrosarcoma with a sensitivity of 90%, reducing the potential diagnostic delay. However, the specificity was 29%, inducing overmedicalisation (excessive follow-up). ROC-AUC of the BACTIP was poor for differentiating enchondroma from ACT (ROC-AUC = 0.69; 95%CI = 0.51-0.87; p = 0.041) and fair-good for differentiation between other CCT groups (ROC-AUC = 0.72-0.81). BACTIP recommendations were incorrect/unsafe in five ACTs and one CSII, potentially inducing diagnostic delay. Eleven enchondromas received unnecessary referrals/follow-up. CONCLUSION: Although promising as a useful tool for management/follow-up of CCTs of the proximal humerus, distal femur, and proximal tibia, five ACTs and one chondrosarcoma grade II were discharged, potentially inducing diagnostic delay, which could be reduced by adapting BACTIP cut-off values. CLINICAL RELEVANCE STATEMENT: Mostly, Birmingham Atypical Cartilage Tumour Imaging Protocol (BACTIP) assesses central cartilage tumours of the proximal humerus and the knee correctly. Both when using the BACTIP and when adapting cut-offs, caution should be taken for the trade-off between underdiagnosis/potential diagnostic delay in chondrosarcomas and overmedicalisation in enchondromas. KEY POINTS: • This retrospective external validation confirms the Birmingham Atypical Cartilage Tumour Imaging Protocol as a useful tool for initial assessment and follow-up recommendation of central cartilage tumours in the proximal humerus and around the knee in the majority of cases. • Using only the Birmingham Atypical Cartilage Tumour Imaging Protocol, both atypical cartilaginous tumours and high-grade chondrosarcomas (grade II, grade III, and dedifferentiated chondrosarcomas) can be misdiagnosed, excluding them from specialist referral and further follow-up, thus creating a potential risk of delayed diagnosis and worse prognosis. • Adapted cut-offs to maximise detection of atypical cartilaginous tumours and high-grade chondrosarcomas, minimise underdiagnosis and reduce potential diagnostic delay in malignant tumours but increase unnecessary referral and follow-up of benign tumours.


Assuntos
Neoplasias Ósseas , Condroma , Condrossarcoma , Úmero , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Ósseas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Condroma/diagnóstico por imagem , Condrossarcoma/diagnóstico por imagem , Úmero/diagnóstico por imagem , Adulto , Diagnóstico Diferencial , Tíbia/diagnóstico por imagem , Tíbia/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia
2.
Skeletal Radiol ; 53(2): 353-364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37515643

RESUMO

OBJECTIVE: To determine the value of CT and dynamic contrast-enhanced (DCE-)MRI for monitoring denosumab therapy of giant cell tumors of bone (GCTB) by correlating it to histopathology. MATERIALS AND METHODS: Patients with GCTB under denosumab treatment and monitored with CT and (DCE-)MRI (2012-2021) were retrospectively included. Imaging and (semi-)quantitative measurements were used to assess response/relapse. Tissue samples were analyzed using computerized segmentation for vascularization and number of neoplastic and giant cells. Pearson's correlation/Spearman's rank coefficient and Kruskal-Wallis tests were used to assess correlations between histopathology and radiology. RESULTS: Six patients (28 ± 8years; five men) were evaluated. On CT, good responders showed progressive re-ossification (+7.8HU/month) and cortical remodeling (woven bone). MRI showed an SI decrease relative to muscle on T1-weighted (-0.01 A.U./month) and on fat-saturated T2-weighted sequences (-0.03 A.U./month). Time-intensity-curves evolved from a type IV with high first pass, high amplitude, and steep wash-out to a slow type II. An increase in time-to-peak (+100%) and a decrease in Ktrans (-71%) were observed. This is consistent with microscopic examination, showing a decrease of giant cells (-76%), neoplastic cells (-63%), and blood vessels (-28%). There was a strong statistical significant inverse correlation between time-to-peak and microvessel density (ρ = -0.9, p = 0.01). Significantly less neoplastic (p = 0.03) and giant cells (p = 0.04) were found with a time-intensity curve type II, compared to a type IV. Two patients showed relapse after initial good response when stopping denosumab. Inverse imaging and pathological findings were observed. CONCLUSION: CT and (DCE-)MRI show a good correlation with pathology and allow adequate evaluation of response to denosumab and detection of therapy failure.


Assuntos
Conservadores da Densidade Óssea , Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Radiologia , Masculino , Humanos , Denosumab/uso terapêutico , Estudos Retrospectivos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Recidiva Local de Neoplasia , Tumor de Células Gigantes do Osso/diagnóstico por imagem , Tumor de Células Gigantes do Osso/tratamento farmacológico , Tumor de Células Gigantes do Osso/patologia , Recidiva
3.
Skeletal Radiol ; 53(2): 319-328, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37464020

RESUMO

OBJECTIVE: To identify which dynamic contrast-enhanced (DCE-)MRI features best predict histological response to neoadjuvant chemotherapy in patients with an osteosarcoma. METHODS: Patients with osteosarcoma who underwent DCE-MRI before and after neoadjuvant chemotherapy prior to resection were retrospectively included at two different centers. Data from the center with the larger cohort (training cohort) was used to identify which method for region-of-interest selection (whole slab or focal area method) and which change in DCE-MRI features (time to enhancement, wash-in rate, maximum relative enhancement and area under the curve) gave the most accurate prediction of histological response. Models were created using logistic regression and cross-validated. The most accurate model was then externally validated using data from the other center (test cohort). RESULTS: Fifty-five (27 poor response) and 30 (19 poor response) patients were included in training and test cohorts, respectively. Intraclass correlation coefficient of relative DCE-MRI features ranged 0.81-0.97 with the whole slab and 0.57-0.85 with the focal area segmentation method. Poor histological response was best predicted with the whole slab segmentation method using a single feature threshold, relative wash-in rate <2.3. Mean accuracy was 0.85 (95%CI: 0.75-0.95), and area under the receiver operating characteristic curve (AUC-index) was 0.93 (95%CI: 0.86-1.00). In external validation, accuracy and AUC-index were 0.80 and 0.80. CONCLUSION: In this study, a relative wash-in rate of <2.3 determined with the whole slab segmentation method predicted histological response to neoadjuvant chemotherapy in osteosarcoma. Consistent performance was observed in an external test cohort.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Terapia Neoadjuvante/métodos , Estudos Retrospectivos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico
4.
Front Bioeng Biotechnol ; 10: 914979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711632

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. At its intermediate, unresectable stage, HCC is typically treated by local injection of embolizing microspheres in the hepatic arteries to selectively damage tumor tissue. Interestingly, computational fluid dynamics (CFD) has been applied increasingly to elucidate the impact of clinically variable parameters, such as injection location, on the downstream particle distribution. This study aims to reduce the computational cost of such CFD approaches by introducing a novel truncation algorithm to simplify hepatic arterial trees, and a hybrid particle-flow modeling approach which only models particles in the first few bifurcations. A patient-specific hepatic arterial geometry was pruned at three different levels, resulting in three trees: Geometry 1 (48 outlets), Geometry 2 (38 outlets), and Geometry 3 (17 outlets). In each geometry, 1 planar injection and 3 catheter injections (each with different tip locations) were performed. For the truncated geometries, it was assumed that, downstream of the truncated outlets, particles distributed themselves proportional to the blood flow. This allowed to compare the particle distribution in all 48 "outlets" for each geometry. For the planar injections, the median difference in outlet-specific particle distribution between Geometry 1 and 3 was 0.21%; while the median difference between outlet-specific flow and particle distribution in Geometry 1 was 0.40%. Comparing catheter injections, the maximum median difference in particle distribution between Geometry 1 and 3 was 0.24%, while the maximum median difference between particle and flow distribution was 0.62%. The results suggest that the hepatic arterial tree might be reliably truncated to estimate the particle distribution in the full-complexity tree. In the resulting hybrid particle-flow model, explicit particle modeling was only deemed necessary in the first few bifurcations of the arterial tree. Interestingly, using flow distribution as a surrogate for particle distribution in the entire tree was considerably less accurate than using the hybrid model, although the difference was much higher for catheter injections than for planar injections. Future work should focus on replicating and experimentally validating these results in more patient-specific geometries.

5.
Skeletal Radiol ; 51(1): 101-122, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523007

RESUMO

The last decades, increasing research has been conducted on dynamic contrast-enhanced and diffusion-weighted MRI techniques in multiple myeloma and its precursors. Apart from anatomical sequences which are prone to interpretation errors due to anatomical variants, other pathologies and subjective evaluation of signal intensities, dynamic contrast-enhanced and diffusion-weighted MRI provide additional information on microenvironmental changes in bone marrow and are helpful in the diagnosis, staging and follow-up of plasma cell dyscrasias. Diffusion-weighted imaging provides information on diffusion (restriction) of water molecules in bone marrow and in malignant infiltration. Qualitative evaluation by visually assessing images with different diffusion sensitising gradients and quantitative evaluation of the apparent diffusion coefficient are studied extensively. Dynamic contrast-enhanced imaging provides information on bone marrow vascularisation, perfusion, capillary resistance, vascular permeability and interstitial space, which are systematically altered in different disease stages and can be evaluated in a qualitative and a (semi-)quantitative manner. Both diffusion restriction and abnormal dynamic contrast-enhanced MRI parameters are early biomarkers of malignancy or disease progression in focal lesions or in regions with diffuse abnormal signal intensities. The added value for both techniques lies in better detection and/or characterisation of abnormal bone marrow otherwise missed or misdiagnosed on anatomical MRI sequences. Increased detection rates of focal lesions or diffuse bone marrow infiltration upstage patients to higher disease stages, provide earlier access to therapy and slower disease progression and allow closer monitoring of high-risk patients. Despite promising results, variations in imaging protocols, scanner types and post-processing methods are large, thus hampering universal applicability and reproducibility of quantitative imaging parameters. The myeloma response assessment and diagnosis system and the international myeloma working group provide a systematic multicentre approach on imaging and propose which parameters to use in multiple myeloma and its precursors in an attempt to overcome the pitfalls of dynamic contrast-enhanced and diffusion-weighted imaging.Single sentence summary statementDiffusion-weighted imaging and dynamic contrast-enhanced MRI provide important additional information to standard anatomical MRI techniques for diagnosis, staging and follow-up of patients with plasma cell dyscrasias, although some precautions should be taken on standardisation of imaging protocols to improve reproducibility and application in multiple centres.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico por imagem , Mieloma Múltiplo/diagnóstico por imagem , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA