RESUMO
OBJECTIVES: We aimed to discover CpG sites with differential DNA methylation in peripheral blood leukocytes associated with body mass index (BMI) in pregnancy and gestational weight gain (GWG) in women of European and South Asian ancestry. Furthermore, we aimed to investigate how the identified sites were associated with methylation quantitative trait loci, gene ontology, and cardiometabolic parameters. METHODS: In the Epigenetics in pregnancy (EPIPREG) sample we quantified maternal DNA methylation in peripheral blood leukocytes in gestational week 28 with Illumina's MethylationEPIC BeadChip. In women with European (n = 303) and South Asian (n = 164) ancestry, we performed an epigenome-wide association study of BMI in gestational week 28 and GWG between gestational weeks 15 and 28 using a meta-analysis approach. Replication was performed in the Norwegian Mother, Father, and Child Cohort Study, the Study of Assisted Reproductive Technologies (MoBa-START) (n = 877, mainly European/Norwegian). RESULTS: We identified one CpG site significantly associated with GWG (p 5.8 × 10-8) and five CpG sites associated with BMI at gestational week 28 (p from 4.0 × 10-8 to 2.1 × 10-10). Of these, we were able to replicate three in MoBa-START; cg02786370, cg19758958 and cg10472537. Two sites are located in genes previously associated with blood pressure and BMI. DNA methylation at the three replicated CpG sites were associated with levels of blood pressure, lipids and glucose in EPIPREG (p from 1.2 × 10-8 to 0.04). CONCLUSIONS: We identified five CpG sites associated with BMI at gestational week 28, and one with GWG. Three of the sites were replicated in an independent cohort. Several genetic variants were associated with DNA methylation at cg02786379 and cg16733643 suggesting a genetic component influencing differential methylation. The identified CpG sites were associated with cardiometabolic traits. GOV REGISTRATION NO: Not applicable.
Assuntos
Doenças Cardiovasculares , Ganho de Peso na Gestação , Feminino , Humanos , Gravidez , Índice de Massa Corporal , Doenças Cardiovasculares/genética , Estudos de Coortes , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma , População Europeia , Estudo de Associação Genômica Ampla , Ganho de Peso na Gestação/genética , Leucócitos , População do Sul da Ásia , Metanálise como AssuntoRESUMO
The tetraphenyltetracyanoporphyrazine complex of ytterbium has been studied as a potential photosensitizer for fluorescence diagnostics and photodynamic therapy (PDT) of cancer. It has been shown that the new compound has an intensive absorption and fluorescence in the "tissue optical window". In particular, the absorption maximum of the complex is at the wavelength of 590 nm, and the fluorescence emission maximum is at 640 nm. A strong fluorescence enhancement with a 50-fold increase in the quantum yield has been revealed in blood serum. The experiments on human cancer cells line have demonstrated that the complex penetrates the cells in vitro and is located around the nuclei. The biodistribution and pharmacokinetics of the complex in animals have been investigated in vivo by a new method of transillumination fluorescence imaging using a peculiar setup. It has been found that the period of maximum uptake of the complex in mouse cervical carcinoma is from 3 to 6 h after i.v. injection, with the half-life in the tumor being 24 h. However, the selectivity of the complex in the tumor is not high enough. The time of clearance from the body is about 48 h. The area of the strongest fluorescence in the abdominal cavity in in vivo images is anatomically recognized as the intestine. This indicates that the new compounds undergo mainly the hepatic clearance mainly. The conventional methods ex vivo (confocal microscopy and point spectroscopic measurements) have detected the largest content of the complex in the intestine, liver, skin and tumor tissue. In general, the optical characteristics of the ytterbium porphyrazine complex as well as the features of its interaction with biological objects make it promising drug candidate for the photodynamic therapy and/or fluorescence diagnostics of cancer. However, a search for other novel formulations possessing a higher tumor selectivity remains an urgent problem.