RESUMO
Bone tissue engineering offers a promising alternative to stimulate the regeneration of damaged tissue, overcoming the limitations of conventional autografts and allografts. Recently, titanium alloy (Ti) implants have garnered significant attention for treating critical-sized bone defects, especially with the advancement of 3D printing technology. Although Ti alloys have impressive versatility, their lack of cellular adhesion, osteogenic and antibacterial properties are significant factors that contribute to their failure. Hence, to overcome these obstacles, this study aimed to incorporate osteoinductive and antibacterial cue-loaded hydrogels into 3D-printed Ti (3D-Ti) scaffolds. 3D-Ti scaffolds were synthesized using the direct metal laser sintering method and loaded with a gelatin (Gel) hydrogel containing strontium-doped silver nanoparticles (Sr-Ag NPs). Compared with Ag NPs, Sr-doped Ag NPs increased the expression of Runx2 mRNA, which is a key bone transcription factor. We subjected the bioactive 3D-hybrid scaffolds (3D-Ti/Gel/Sr-Ag NPs) to physicochemical and material characterization, followed by cytocompatibility and osteogenic evaluation. The microporous and macroporous topographies of the scaffolds with Sr-Ag NPs showed increased Runx2 expression and matrix mineralization, with potent antibacterial properties. Therefore, the 3D-Ti scaffolds incorporated with Sr-Ag NP-loaded Gel hydrogels favored osteoblast differentiation and antibacterial activity, indicating their potential for orthopedic applications.
Assuntos
Antibacterianos , Diferenciação Celular , Gelatina , Hidrogéis , Nanopartículas Metálicas , Osteoblastos , Osteogênese , Impressão Tridimensional , Prata , Estrôncio , Engenharia Tecidual , Alicerces Teciduais , Titânio , Prata/química , Prata/farmacologia , Gelatina/química , Estrôncio/química , Estrôncio/farmacologia , Titânio/química , Titânio/farmacologia , Engenharia Tecidual/métodos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Antibacterianos/química , Antibacterianos/farmacologia , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas Metálicas/química , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Osso e Ossos/efeitos dos fármacosRESUMO
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Engenharia Tecidual , Osteossarcoma/tratamento farmacológico , Alicerces Teciduais , Neoplasias Ósseas/tratamento farmacológico , Sistemas de Liberação de MedicamentosRESUMO
In designing and fabricating scaffolds to fill the bone defects and stimulate new bone formation, the biomimetics of the construct is a crucial factor in invoking the bone microenvironment to promote osteogenic differentiation. Regarding structural traits, changes in porous characteristics of the scaffolds, such as pore size, pore morphology, and percentage porosity, may patronize or jeopardize their other physicochemical and biological properties. Chitosan (CS), a biodegradable naturally occurring polymer, has recently drawn considerable attention as a scaffolding material in tissue engineering and regenerative medicine. CS-based microporous scaffolds have been reported to aid osteogenesis under both in vitro and in vivo conditions by supporting cellular attachment and proliferation of osteoblast cells and the formation of mineralized bone matrix. This related notion may be found in numerous earlier research, even though the precise mechanism of action that encourages the development of new bone still needs to be understood completely. This article presents the potential correlations and the significance of the porous properties of the CS-based scaffolds to influence osteogenesis and angiogenesis during bone regeneration. This review also goes over resolving the mechanical limitations of CS by blending it with other polymers and ceramics.