Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diseases ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534967

RESUMO

The immune response to infectious diseases is directly influenced by metabolic activities. COVID-19 is a disease that affects the entire body and can significantly impact cellular metabolism. Recent studies have focused their analysis on the potential connections between post-infection stages of SARS-CoV2 and different metabolic pathways. The spike S1 antigen was found to have in vitro IgG antibody memory for PBMCs when obtaining PBMC cultures 60-90 days post infection, and a significant increase in S-adenosyl homocysteine, sarcosine, and arginine was detected by mass spectrometric analysis. The involvement of these metabolites in physiological recovery from viral infections and immune activity is well documented, and they may provide a new and simple method to better comprehend the impact of SARS-CoV2 on leukocytes. Moreover, there was a significant change in the metabolism of the tryptophan and urea cycle pathways in leukocytes with IgG memory. With these data, together with results from the literature, it seems that leukocyte metabolism is reprogrammed after viral pathogenesis by activating certain amino acid pathways, which may be related to protective immunity against SARS-CoV2.

2.
Front Aging ; 4: 1161565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025499

RESUMO

Oxidative phenomena are considered to lie at the root of the accelerated senescence observed in red blood cells (RBCs) stored under standard blood bank conditions. It was recently shown that the addition of uric (UA) and/or ascorbic acid (AA) to the preservative medium beneficially impacts the storability features of RBCs related to the handling of pro-oxidant triggers. This study constitutes the next step, aiming to examine the links between hemolysis, redox, and metabolic parameters in control and supplemented RBC units of different storage times. For this purpose, a paired correlation analysis of physiological and metabolism parameters was performed between early, middle, and late storage in each subgroup. Strong and repeated correlations were observed throughout storage in most hemolysis parameters, as well as in reactive oxygen species (ROS) and lipid peroxidation, suggesting that these features constitute donor-signatures, unaffected by the diverse storage solutions. Moreover, during storage, a general "dialogue" was observed between parameters of the same category (e.g., cell fragilities and hemolysis or lipid peroxidation and ROS), highlighting their interdependence. In all groups, extracellular antioxidant capacity, proteasomal activity, and glutathione precursors of preceding time points anticorrelated with oxidative stress lesions of upcoming ones. In the case of supplemented units, factors responsible for glutathione synthesis varied proportionally to the levels of glutathione itself. The current findings support that UA and AA addition reroutes the metabolism to induce glutathione production, and additionally provide mechanistic insight and footing to examine novel storage optimization strategies.

3.
Front Mol Biosci ; 10: 1297826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38726050

RESUMO

There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.

4.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361542

RESUMO

The placenta is a crucial interface between the fetus and the maternal environment. It allows for nutrient absorption, thermal regulation, waste elimination, and gas exchange through the mother's blood supply. Furthermore, the placenta determines important adjustments and epigenetic modifications that can change the phenotypic expression of the individual even long after birth. Polyethylene glycol (PEG) is a polyether compound derived from petroleum with many applications, from medicine to industrial manufacturing. In this study, for the first time, an integration of ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) was used to detect suites of PEG compounds in human placenta samples, collected from 12 placentas, originating from physiological pregnancy. In 10 placentas, we identified fragments of PEG in both chorioamniotic membranes and placental cotyledons, for a total of 36 samples.


Assuntos
Placenta , Espectrometria de Massas em Tandem , Humanos , Feminino , Gravidez , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Placenta/metabolismo , Plásticos/metabolismo , Polietilenoglicóis/metabolismo
5.
Redox Biol ; 57: 102477, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155342

RESUMO

Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.

6.
Metabolites ; 11(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063124

RESUMO

Agro-wastes are one of the major sources for nutritional and therapeutic benefits along with other beneficial properties. Dark brown pellicular pericarp (skin or testa), covering the hazelnut seed, is removed before consumption after the roasting of a kernel. Defatted skins of both hazelnut varieties, Tonda Gentile Romana and Tonda di Giffoni, were profiled by a metabolomics-based approach and this was used to discriminate between these two different hazelnut cultivars. In particular, an untargeted metabolomic extract from hazelnut by-products was investigated by UHPLC-Mass spectrometry followed by multivariate statistics analysis, and significant qualitative and quantitative metabolic differences were observed between them. Samples were also assessed for their total phenolic and antioxidant capacity using two different assays. Although no significant differences were found in total phenolic contents and antioxidant capacity, the Flavone, Flavonol, Flavonoid, and Phenylpropanoid Biosynthesis pathway was significantly higher in the Romana rather than in the Giffoni variety, whereas Myricetin and Syringetin compounds were more representative in Giffoni cultivars. These results indicated that hazelnut skin, especially from the Romana variety, could potentially be used as an ingredient in healthy food. Healthy food is a new food category with an expanding demand from future generations.

7.
J Clin Med ; 9(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756427

RESUMO

The treatment of solid cancers with pharmacological all-trans retinoic acid (ATRA) concentrations, even if it is a gold standard therapy for the acute promyelocytic leukaemia (APL), is not always effective due to some resistance mechanisms. Here the resistance to ATRA treatment of T24 cell line, bladder cancer, was investigated. T24 was not only resistant to cell death when treated at concentrations up to 20 µM of ATRA, but it was also able to stimulate the cellular proliferation. An over-expression of the fatty acid binding protein 5 (FABP5) in conjunction with the cellular retinol-binding protein-II (CRABP-II) down-expression was found. However, the direct inhibition of the peroxisome proliferator-activated receptor ß/δ (PPARß/δ) did not abolish T24 proliferation, but rather potentiated it. Moreover, considering the ability of the long-chain fatty acids (LCFAs) to displace ATRA from FABP5, the actions of the saturated palmitic acid (PA), unsaturated omega-6 linoleic acid (LA) and omega-3 docosahexaenoic acid (DHA) were evaluated to counteract ATRA-related proliferation. ATRA-PA co-treatment induces cellular growth inhibition, while ATRA-LA co-treatment induces cellular growth enhancement. However, even if DHA is unsaturated LCFA as LA, it was able to reverse the ATRA-induced cellular proliferation of T24, bringing the viability percentages at the levels of the control.

8.
Metabolites ; 10(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708819

RESUMO

In recent years, some studies have described metabolic changes during human childbirth labor. Metabolomics today is recognized as a powerful approach in a prenatal research context, since it can provide detailed information during pregnancy and it may enable the identification of biomarkers with potential diagnostic or predictive. This is an observational, longitudinal, prospective cohort study of a total of 51 serial urine samples from 15 healthy pregnant women, aged 29-40 years, which were collected before the onset of labor (out of labor, OL). In the same women, during labor (in labor or dilating phase, IL-DP). Samples were analyzed by hydrophilic interaction ultra-performance liquid chromatography coupled with mass spectrometry (HILIC-UPLC-MS), a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. This method was used to identify the potential biomarkers. The top 20 most discriminative metabolites contributing to the complete separation of OL and IL-DP were identified. Urinary metabolites displaying the largest differences between OL and IL-DP belonged to steroid hormone, particularly conjugated estrogens and amino acids much of this difference is determined by the fetal contribution. In addition, our results highlighted the efficacy of using urine samples instead of more invasive techniques to evaluate the difference in metabolic analysis between OL and IL-DP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA