RESUMO
Stroke is a significant cause of mortality and long-term disability worldwide, with variable recovery trajectories posing substantial challenges in anticipating post-event care and rehabilitation planning. The NeuralCup 2023 consortium was established to address these challenges by comparing the predictability of stroke outcome models through a collaborative, data-driven approach. This study presents the consortium's findings, which involved 15 participating teams worldwide. Using a comprehensive dataset, which included clinical and imaging data, we conducted an open competition to identify and compare predictors of motor, cognitive, and neuropsychological (emotional) outcomes one-year post-stroke. Analyses incorporated both traditional and novel methods, including machine learning algorithms. These efforts culminated in the search for 'optimal recipes' for predicting each domain through an exhaustive exploration of the features of all the approaches. Key predictors included lesion characteristics, T1-weighted MRI sequences, and demographic factors. Notably, integrating FLAIR imaging and white matter tract analysis emerged as crucial to improving the accuracy of cognitive and motor outcome predictions, respectively. These findings advocate for a tailored, multifaceted approach to stroke outcome prediction, underscoring the potential of collaborative data science in addressing complex neurological prognostication challenges. This study also sets a new benchmark methodology in stroke research, offering a foundational step toward personalized care strategies that could significantly impact recovery planning and quality of life for stroke survivors.
RESUMO
Resilience to emotional disorders is critical for adolescent mental health, especially following childhood abuse. Yet, brain signatures of resilience remain undetermined due to the differential susceptibility of the brain's emotion processing system to environmental stresses. Analyzing brain's responses to angry faces in a longitudinally large-scale adolescent cohort (IMAGEN), we identified two functional networks related to the orbitofrontal and occipital regions as candidate brain signatures of resilience. In girls, but not boys, higher activation in the orbitofrontal-related network was associated with fewer emotional symptoms following childhood abuse, but only when the polygenic burden for depression was high. This finding defined a genetic-dependent brain (GDB) signature of resilience. Notably, this GDB signature predicted subsequent emotional disorders in late adolescence, extending into early adulthood and generalizable to another independent prospective cohort (ABCD). Our findings underscore the genetic modulation of resilience-brain connections, laying the foundation for enhancing adolescent mental health through resilience promotion.
RESUMO
Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models ("conv5-FC3", ResNet and "SECNN") as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the "conv5-FC3" network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained models will be made publicly available should the manuscript be accepted.
RESUMO
The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.
RESUMO
Current psychiatric diagnoses are not defined by neurobiological measures which hinders the development of therapies targeting mechanisms underlying mental illness 1,2 . Research confined to diagnostic boundaries yields heterogeneous biological results, whereas transdiagnostic studies often investigate individual symptoms in isolation. There is currently no paradigm available to comprehensively investigate the relationship between different clinical symptoms, individual disorders, and the underlying neurobiological mechanisms. Here, we propose a framework that groups clinical symptoms derived from ICD-10/DSM-V according to shared brain mechanisms defined by brain structure, function, and connectivity. The reassembly of existing ICD-10/DSM-5 symptoms reveal six cross-diagnostic psychopathology scores related to mania symptoms, depressive symptoms, anxiety symptoms, stress symptoms, eating pathology, and fear symptoms. They were consistently associated with multimodal neuroimaging components in the training sample of young adults aged 23, the independent test sample aged 23, participants aged 14 and 19 years, and in psychiatric patients. The identification of symptom groups of mental illness robustly defined by precisely characterized brain mechanisms enables the development of a psychiatric nosology based upon quantifiable neurobiological measures. As the identified symptom groups align well with existing diagnostic categories, our framework is directly applicable to clinical research and patient care.
RESUMO
Background: Early negative life events (NLE) have long-lasting influences on neurodevelopment and psychopathology. Reduced orbitofrontal cortex (OFC) thickness was frequently associated with NLE and depressive symptoms. OFC thinning might mediate the effect of NLE on depressive symptoms, although few longitudinal studies exist. Using a complete longitudinal design with four time points, we examined whether NLE during childhood and early adolescence predict depressive symptoms in young adulthood through accelerated OFC thinning across adolescence. Methods: We acquired structural MRI from 321 participants at two sites across four time points from ages 14 to 22. We measured NLE with the Life Events Questionnaire at the first time point and depressive symptoms with the Center for Epidemiologic Studies Depression Scale at the fourth time point. Modeling latent growth curves, we tested whether OFC thinning mediates the effect of NLE on depressive symptoms. Results: A higher burden of NLE, a thicker OFC at the age of 14, and an accelerated OFC thinning across adolescence predicted young adults' depressive symptoms. We did not identify an effect of NLE on OFC thickness nor OFC thickness mediating effects of NLE on depressive symptoms. Conclusions: Using a complete longitudinal design with four waves, we show that NLE in childhood and early adolescence predict depressive symptoms in the long term. Results indicate that an accelerated OFC thinning may precede depressive symptoms. Assessment of early additionally to acute NLEs and neurodevelopment may be warranted in clinical settings to identify risk factors for depression.
RESUMO
Adolescent subcortical structural brain development might underlie psychopathological symptoms, which often emerge in adolescence. At the same time, sex differences exist in psychopathology, which might be mirrored in underlying sex differences in structural development. However, previous studies showed inconsistencies in subcortical trajectories and potential sex differences. Therefore, we aimed to investigate the subcortical structural trajectories and their sex differences across adolescence using for the first time a single cohort design, the same quality control procedure, software, and a general additive mixed modeling approach. We investigated two large European sites from ages 14 to 24 with 503 participants and 1408 total scans from France and Germany as part of the IMAGEN project including four waves of data acquisition. We found significantly larger volumes in males versus females in both sites and across all seven subcortical regions. Sex differences in age-related trajectories were observed across all regions in both sites. Our findings provide further evidence of sex differences in longitudinal adolescent brain development of subcortical regions and thus might eventually support the relationship of underlying brain development and different adolescent psychopathology in boys and girls.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Adolescente , Feminino , Adulto Jovem , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Desenvolvimento do Adolescente , Caracteres SexuaisRESUMO
During late adolescence, the brain undergoes ontogenic organization altering subcortical-cortical circuitry. This includes regions implicated in pain chronicity, and thus alterations in the adolescent ontogenic organization could predispose to pain chronicity in adulthood - however, evidence is lacking. Using resting-state functional magnetic resonance imaging from a large European longitudinal adolescent cohort and an adult cohort with and without chronic pain, we examined links between painful symptoms and brain connectivity. During late adolescence, thalamo-, caudate-, and red nucleus-cortical connectivity were positively and subthalamo-cortical connectivity negatively associated with painful symptoms. Thalamo-cortical connectivity, but also subthalamo-cortical connectivity, was increased in adults with chronic pain compared to healthy controls. Our results indicate a shared basis in basothalamo-cortical circuitries between adolescent painful symptomatology and adult pain chronicity, with the subthalamic pathway being differentially involved, potentially due to a hyperconnected thalamo-cortical pathway in chronic pain and ontogeny-driven organization. This can inform neuromodulation-based prevention and early intervention.
RESUMO
Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.
Assuntos
Estudo de Associação Genômica Ampla , Hipotálamo , Humanos , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagem , Masculino , Feminino , Adulto , Transtornos Mentais/genética , Proteínas ADAMTS/genética , Pessoa de Meia-Idade , Análise da Randomização MendelianaRESUMO
A growing number of evidence supports a continued distribution of autistic traits in the general population. However, brain maturation trajectories of autistic traits as well as the influence of sex on these trajectories remain largely unknown. We investigated the association of autistic traits in the general population, with longitudinal gray matter (GM) maturation trajectories during the critical period of adolescence. We assessed 709 community-based adolescents (54.7% women) at age 14 and 22. After testing the effect of sex, we used whole-brain voxel-based morphometry to measure longitudinal GM volumes changes associated with autistic traits measured by the Social Responsiveness Scale (SRS) total and sub-scores. In women, we observed that the SRS was associated with slower GM volume decrease globally and in the left parahippocampus and middle temporal gyrus. The social communication sub-score correlated with slower GM volume decrease in the left parahippocampal, superior temporal gyrus, and pallidum; and the social cognition sub-score correlated with slower GM volume decrease in the left middle temporal gyrus, the right ventromedial prefrontal and orbitofrontal cortex. No longitudinal association was found in men. Autistic traits in young women were found to be associated with specific brain trajectories in regions of the social brain and the reward circuit known to be involved in Autism Spectrum Disorder. These findings support both the hypothesis of an earlier GM maturation associated with autistic traits in adolescence and of protective mechanisms in women. They advocate for further studies on brain trajectories associated with autistic traits in women.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Humanos , Adolescente , Feminino , Adulto , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagemRESUMO
The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.
Assuntos
Doença de Alzheimer , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologiaRESUMO
Even though deficits in social cognition constitute a core characteristic of autism spectrum disorders, a large heterogeneity exists regarding individual social performances and its neural basis remains poorly investigated. Here, we used eye-tracking to objectively measure interindividual variability in social perception and its correlation with white matter microstructure, measured with diffusion tensor imaging MRI, in 25 children with autism spectrum disorder (8.5 ± 3.8 years). Beyond confirming deficits in social perception in participants with autism spectrum disorder compared 24 typically developing controls (10.5 ± 2.9 years), results revealed a large interindividual variability of such behavior among individuals with autism spectrum disorder. Whole-brain analysis showed in both autism spectrum disorder and typically developing groups a positive correlation between number of fixations to the eyes and fractional anisotropy values mainly in right and left superior longitudinal tracts. In children with autism spectrum disorder a correlation was also observed in right and left inferior longitudinal tracts. Importantly, a significant interaction between group and number of fixations to the eyes was observed within the anterior portion of the right inferior longitudinal fasciculus, mainly in the right anterior temporal region. This additional correlation in a supplementary region suggests the existence of a compensatory brain mechanism, which may support enhanced performance in social perception among children with autism spectrum disorder.
Assuntos
Transtorno do Espectro Autista , Substância Branca , Criança , Humanos , Imagem de Tensor de Difusão/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Tecnologia de Rastreamento Ocular , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Percepção Social , AnisotropiaRESUMO
Binge drinking behavior in early adulthood can be predicted from brain structure during early adolescence with an accuracy of above 70%. We investigated whether this accurate prospective prediction of alcohol misuse behavior can be explained by psychometric variables such as personality traits or mental health comorbidities in a data-driven approach. We analyzed a subset of adolescents who did not have any prior binge drinking experience at age 14 (IMAGEN dataset, n = 555, 52.61% female). Participants underwent structural magnetic resonance imaging at age 14, binge drinking assessments at ages 14 and 22, and psychometric questionnaire assessments at ages 14 and 22. We derived structural brain features from T1-weighted magnetic resonance and diffusion tensor imaging. Using Machine Learning (ML), we predicted binge drinking (age 22) from brain structure (age 14) and used counterbalancing with oversampling to systematically control for 110 + variables from a wide range of social, personality, and other psychometric characteristics potentially associated with binge drinking. We evaluated if controlling for any variable resulted in a significant reduction in ML prediction accuracy. Sensation-seeking (-13.98 ± 1.68%), assessed via the Substance Use Risk Profile Scale at age 14, and uncontrolled eating (-13.98 ± 3.28%), assessed via the Three-Factor-Eating-Questionnaire at age 22, led to significant reductions in mean balanced prediction accuracy upon controlling for them. Thus, sensation-seeking and binge eating could partially explain the prediction of future binge drinking from adolescent brain structure. Our findings suggest that binge drinking and binge eating at age 22 share common neurobiological precursors discovered by the ML model. These neurobiological precursors seem to be associated with sensation-seeking at age 14. Our results facilitate early detection of increased risk for binge drinking and inform future clinical research in trans-diagnostic prevention approaches for adolescent alcohol misuse.
Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Humanos , Adolescente , Feminino , Adulto , Adulto Jovem , Masculino , Estudos Prospectivos , Imagem de Tensor de Difusão , Etanol , Encéfalo/diagnóstico por imagem , Sensação , Consumo de Bebidas AlcoólicasRESUMO
The temporo-basal region of the human brain is composed of the collateral, the occipito-temporal, and the rhinal sulci. We manually rated (using a novel protocol) the connections between rhinal/collateral (RS-CS), collateral/occipito-temporal (CS-OTS) and rhinal/occipito-temporal (RS-OTS) sulci, using the MRI of nearly 3400 individuals including around 1000 twins. We reported both the associations between sulcal polymorphisms as well with a wide range of demographics (e.g. age, sex, handedness). Finally, we also estimated the heritability, and the genetic correlation between sulcal connections. We reported the frequency of the sulcal connections in the general population, which were hemisphere dependent. We found a sexual dimorphism of the connections, especially marked in the right hemisphere, with a CS-OTS connection more frequent in females (approximately 35-40% versus 20-25% in males) and an RS-CS connection more common in males (approximately 40-45% versus 25-30% in females). We confirmed associations between sulcal connections and characteristics of incomplete hippocampal inversion (IHI). We estimated the broad sense heritability to be 0.28-0.45 for RS-CS and CS-OTS connections, with hints of dominant contribution for the RS-CS connection. The connections appeared to share some of their genetic causing factors as indicated by strong genetic correlations. Heritability appeared much smaller for the (rarer) RS-OTS connection.
Assuntos
Caracteres Sexuais , Lobo Temporal , Masculino , Feminino , Humanos , Lobo Temporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hipocampo , Lateralidade Funcional/genéticaRESUMO
Zolpidem is a sedative drug that has been shown to induce a paradoxical effect, restoring brain function in wide range of neurological disorders. The underlying functional mechanism of the effect of zolpidem in the brain in clinical improvement is still poorly understood. Thus, we aimed to investigate rest brain function to study zolpidem-induced symptom improvement in a patient who developed postoperative pediatric cerebellar mutism syndrome, a postoperative complication characterized by delayed onset transient mutism/reduced speech that can occur after medulloblastoma resection. The patient experienced clinical recovery after a single dose of zolpidem. Brain function was investigated using arterial spin labeling MRI and resting-state functional MRI. Imaging was performed at three time-points: preoperative, postoperative during symptoms, and after zolpidem intake when the symptoms regressed. Whole brain rest cerebral blood flow (CBF) and resting state functional connectivity using Pearson coefficient correlations between pairs of regions of interest were investigated two-by-two at the different time points. A comparison between postoperative and preoperative images showed a significant decrease in rest CBF in the left supplementary motor area, Broca's area, and the left striatum and a decrease in functional connectivity within the dentato-thalamo-cortical and cortico-striato-pallido-thalamo-cortical loops. Post-zolpidem images showed increased CBF in the left striatum and increased functional connectivity within the disrupted loops relative to postoperative images. Thus, we observed functional changes within the broader speech network and thalamo-subcortical interactions associated with the paradoxical effect of zolpidem in promoting clinical recovery. This should encourage further functional investigations in the brain to better understand the mechanism of zolpidem in neurological recovery.
RESUMO
Recent studies proposed a general psychopathology factor underlying common comorbidities among psychiatric disorders. However, its neurobiological mechanisms and generalizability remain elusive. In this study, we used a large longitudinal neuroimaging cohort from adolescence to young adulthood (IMAGEN) to define a neuropsychopathological (NP) factor across externalizing and internalizing symptoms using multitask connectomes. We demonstrate that this NP factor might represent a unified, genetically determined, delayed development of the prefrontal cortex that further leads to poor executive function. We also show this NP factor to be reproducible in multiple developmental periods, from preadolescence to early adulthood, and generalizable to the resting-state connectome and clinical samples (the ADHD-200 Sample and the Stratify Project). In conclusion, we identify a reproducible and general neural basis underlying symptoms of multiple mental health disorders, bridging multidimensional evidence from behavioral, neuroimaging and genetic substrates. These findings may help to develop new therapeutic interventions for psychiatric comorbidities.
Assuntos
Transtornos Mentais , Adolescente , Humanos , Adulto Jovem , Comorbidade , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/epidemiologia , Transtornos Mentais/psicologia , Neuroimagem , PsicopatologiaRESUMO
Sleep is an important contributor for neural maturation and emotion regulation during adolescence, with long-term effects on a range of white matter tracts implicated in affective processing in at-risk populations. We investigated the effects of adolescent sleep patterns on longitudinal changes in white matter development and whether this is related to the emergence of emotional (internalizing) problems. Sleep patterns and internalizing problems were assessed using self-report questionnaires in adolescents recruited in the general population followed up from age 14-19 years (N = 111 White matter structure was measured using diffusion tensor imaging (DTI) and estimated using fractional anisotropy (FA). We found that longitudinal increases in time in bed (TIB) on weekends and increases in TIB-variability between weekdays to weekend, were associated with an increase in FA in various interhemispheric and cortico-striatal tracts. Extracted FA values from left superior longitudinal fasciculus mediated the relationship between increases in TIB on weekends and a decrease in internalizing problems. These results imply that while insufficient sleep might have potentially harmful effects on long-term white matter development and internalizing problems, longer sleep duration on weekends (catch-up sleep) might be a natural counteractive and protective strategy.
Assuntos
Substância Branca , Humanos , Adolescente , Adulto Jovem , Adulto , Substância Branca/fisiologia , Imagem de Tensor de Difusão/métodos , Sono , Privação do Sono , Emoções , Anisotropia , EncéfaloRESUMO
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.
Assuntos
Encéfalo , Córtex Cerebral , Animais , Humanos , Filogenia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Encéfalo/anatomia & histologia , Primatas , Imageamento por Ressonância Magnética , Variação Genética , Elementos Facilitadores Genéticos/genéticaRESUMO
OBJECTIVE: Adolescence is a critical period for circadian rhythm, with a strong shift toward eveningness around age 14. Also, eveningness in adolescence has been found to predict later onset of depressive symptoms. However, no previous study has investigated structural variations associated with chronotype in early adolescence and how this adds to the development of depressive symptoms. METHOD: Assessment of 128 community-based adolescents (51% girls) at age 14 and 19 years was performed. Using whole-brain voxel-based morphometry, baseline (at age 14) regional gray matter volumes (GMVs), follow-up (at age 19) regional GMVs, and longitudinal changes (between 14 and 19) associated with Morningness/Eveningness Scale in Children score and sleep habits at baseline were measured. The association of GMV with depressive symptoms at 19 years was studied, and the role of potential clinical and genetic factors as mediators and moderators was assessed. RESULTS: Higher eveningness was associated with larger GMV in the right medial prefrontal cortex at ages 14 and 19 in the whole sample. GMV in this region related to depressive symptoms at age 19 in catechol-O-methyltransferase (COMT) Val/Val, but not in Met COMT, carriers. Larger GMV also was observed in the right fusiform gyrus at age 14, which was explained by later wake-up time during weekends. CONCLUSION: In adolescence, eveningness and its related sleep habits correlated with distinct developmental patterns. Eveningness was specifically associated with GMV changes in the medial prefrontal cortex; this could serve as a brain vulnerability factor for later self-reported depressive symptoms in COMT Val/Val carriers.