Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Behav Neurosci ; 15: 735920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720899

RESUMO

Ultrasonic vocalizations (USVs) are used as a phenotypic marker in mouse models of neuropsychiatric disorders. Nevertheless, current methodologies still require time-consuming manual input or sound recordings clean of any background noise. We developed a method to overcome these two restraints to boost knowledge on mouse USVs. The methods are freely available and the USV analysis runs online at https://usv.pasteur.cloud. As little is currently known about usage and structure of ultrasonic vocalizations during social interactions over the long-term and in unconstrained context, we investigated mouse spontaneous communication by coupling the analysis of USVs with automatic labeling of behaviors. We continuously recorded during 3 days undisturbed interactions of same-sex pairs of C57BL/6J sexually naive males and females at 5 weeks and 3 and 7 months of age. In same-sex interactions, we observed robust differences between males and females in the amount of USVs produced, in the acoustic structure and in the contexts of emission. The context-specific acoustic variations emerged with increasing age. The emission of USVs also reflected a high level of excitement during social interactions. We finally highlighted the importance of studying long-term spontaneous communication by investigating female mice lacking Shank3, a synaptic protein associated with autism. While the previous short-time constrained investigations could not detect USV emission abnormalities, our analysis revealed robust differences in the usage and structure of the USVs emitted by mutant mice compared to wild-type female pairs.

2.
Transl Psychiatry ; 11(1): 23, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414449

RESUMO

Hyperserotonemia is the most replicated biochemical abnormality associated with autism spectrum disorders (ASD). However, previous studies of serotonin synthesis, catabolism, and transport have not elucidated the mechanisms underlying this hyperserotonemia. Here we investigated serotonin sulfation by phenol sulfotransferases (PST) in blood samples from 97 individuals with ASD and their first-degree relatives (138 parents and 56 siblings), compared with 106 controls. We report a deficient activity of both PST isoforms (M and P) in platelets from individuals with ASD (35% and 78% of patients, respectively), confirmed in autoptic tissues (9 pineal gland samples from individuals with ASD-an important source of serotonin). Platelet PST-M deficiency was strongly associated with hyperserotonemia in individuals with ASD. We then explore genetic or pharmacologic modulation of PST activities in mice: variations of PST activities were associated with marked variations of blood serotonin, demonstrating the influence of the sulfation pathway on serotonemia. We also conducted in 1645 individuals an extensive study of SULT1A genes, encoding PST and mapping at highly polymorphic 16p11.2 locus, which did not reveal an association between copy number or single nucleotide variations and PST activity, blood serotonin or the risk of ASD. In contrast, our broader assessment of sulfation metabolism in ASD showed impairments of other sulfation-related markers, including inorganic sulfate, heparan-sulfate, and heparin sulfate-sulfotransferase. Our study proposes for the first time a compelling mechanism for hyperserotonemia, in a context of global impairment of sulfation metabolism in ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Arilsulfotransferase/genética , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Serotonina , Irmãos , Sulfotransferases/genética
3.
Sci Rep ; 10(1): 13315, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769989

RESUMO

Using human induced pluripotent stem cells (iPSC), recent studies have shown that the events underlying autism spectrum disorders (ASD) can occur during neonatal development. We previously analyzed the iPSC-derived pyramidal cortical neurons of a subset of patients with ASD carrying de novo heterozygous mutations in postsynaptic SHANK3 protein, in culture. We reported altered spinogenesis of those neurons. The transplantation of human iPSC-derived neuronal precursors into mouse brain represents a novel option for in vivo analysis of mutations affecting the human brain. In this study, we transplanted the neuronal precursor cells (NPC) into the cortex of newborn mice to analyze their integration and maturation at early stages of development and studied axonal projections of transplanted human neurons into adult mouse brain. We then co-transplanted NPC from a control individual and from a patient carrying a de novo heterozygous SHANK3 mutation. We observed a reduction in cell soma size of selective neuronal categories and in axonal projections at 30 days post-transplantation. In contrast to previous in vitro studies, we did not observe any alteration in spinogenesis at this early age. The humanized chimeric mouse models offer the means to analyze ASD-associated mutations further and provide the opportunity to visualize phenotypes in vivo.


Assuntos
Transtorno do Espectro Autista/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais , Células Piramidais/metabolismo , Transplante de Células-Tronco , Quimeras de Transplante/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Linhagem Celular , Modelos Animais de Doenças , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Células Piramidais/patologia , Quimeras de Transplante/genética
4.
NPJ Genom Med ; 4: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675382

RESUMO

The number of genes associated with autism is increasing, but few studies have been performed on epidemiological cohorts and in isolated populations. Here, we investigated 357 individuals from the Faroe Islands including 36 individuals with autism, 136 of their relatives and 185 non-autism controls. Data from SNP array and whole exome sequencing revealed that individuals with autism had a higher burden of rare exonic copy-number variants altering autism associated genes (deletions (p = 0.0352) or duplications (p = 0.0352)), higher inbreeding status (p = 0.023) and a higher load of rare homozygous deleterious variants (p = 0.011) compared to controls. Our analysis supports the role of several genes/loci associated with autism (e.g., NRXN1, ADNP, 22q11 deletion) and identified new truncating (e.g., GRIK2, ROBO1, NINL, and IMMP2L) or recessive deleterious variants (e.g., KIRREL3 and CNTNAP2) affecting autism-associated genes. It also revealed three genes involved in synaptic plasticity, RIMS4, KALRN, and PLA2G4A, carrying de novo deleterious variants in individuals with autism without intellectual disability. In summary, our analysis provides a better understanding of the genetic architecture of autism in isolated populations by highlighting the role of both common and rare gene variants and pointing at new autism-risk genes. It also indicates that more knowledge about how multiple genetic hits affect neuronal function will be necessary to fully understand the genetic architecture of autism.

5.
Sci Rep ; 9(1): 94, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643170

RESUMO

The synaptic protein SHANK3 encodes a multidomain scaffold protein expressed at the postsynaptic density of neuronal excitatory synapses. We previously identified de novo SHANK3 mutations in patients with autism spectrum disorders (ASD) and showed that SHANK3 represents one of the major genes for ASD. Here, we analyzed the pyramidal cortical neurons derived from induced pluripotent stem cells from four patients with ASD carrying SHANK3 de novo truncating mutations. At 40-45 days after the differentiation of neural stem cells, dendritic spines from pyramidal neurons presented variable morphologies: filopodia, thin, stubby and muschroom, as measured in 3D using GFP labeling and immunofluorescence. As compared to three controls, we observed a significant decrease in SHANK3 mRNA levels (less than 50% of controls) in correlation with a significant reduction in dendritic spine densities and whole spine and spine head volumes. These results, obtained through the analysis of de novo SHANK3 mutations in the patients' genomic background, provide further support for the presence of synaptic abnormalities in a subset of patients with ASD.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Células Piramidais/citologia , Células Piramidais/patologia , Diferenciação Celular , Dendritos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/deficiência , Deleção de Sequência
6.
Sci Rep ; 7(1): 2096, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522826

RESUMO

Autism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls. Our results elucidate the enzymatic mechanism for melatonin deficit in ASD, involving a reduction of both enzyme activities contributing to melatonin synthesis (AANAT and ASMT), observed in the pineal gland as well as in gut and platelets of patients. Further investigations suggest new, post-translational (reduced levels of 14-3-3 proteins which regulate AANAT and ASMT activities) and post-transcriptional (increased levels of miR-451, targeting 14-3-3ζ) mechanisms to these impairments. This study thus gives insights into the pathophysiological pathways involved in ASD.


Assuntos
Proteínas 14-3-3/genética , Transtorno do Espectro Autista/metabolismo , Melatonina/biossíntese , MicroRNAs/genética , Proteínas 14-3-3/metabolismo , Acetilserotonina O-Metiltransferasa/metabolismo , Adolescente , Adulto , Arilalquilamina N-Acetiltransferase/metabolismo , Transtorno do Espectro Autista/genética , Plaquetas/metabolismo , Estudos de Casos e Controles , Criança , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Glândula Pineal/metabolismo
7.
Am J Med Genet A ; 167A(12): 3019-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26334118

RESUMO

Jacobsen syndrome (JS) is characterized by intellectual disability and higher risk for autism spectrum disorders (ASD). All patients with JS are carriers of contiguous de novo deletions of 11q24.2-25, but the causative genes remain unknown. Within the critical interval, we hypothesized that haploinsufficiency of the neuronal cell adhesion molecule Neurotrimin (NTM) might increase the risk for ASD and could affect brain structure volumes. We searched for deleterious mutations affecting NTM in 1256 ASD patients and 1287 controls, using SNP arrays, and by direct sequencing of 250 ASD patients and 180 controls. We compared our results to those obtained from independent cohorts of ASD patients and controls. We identified two patients with Copy Number Variants (CNV) encompassing NTM, one with a large de novo deletion, and a clinical phenotype of JS (including macrocephaly), and a second with a paternally inherited duplication, not consistent with JS. Interestingly, no similar CNVs were observed in controls. We did not observe enrichment for deleterious NTM mutations in our cohort. We then explored if the macrocephaly in the patient with JS was associated with a homogeneous increase of brain structures volumes using automatic segmentation. Compared to subjects without NTM micro-rearrangements (n=188), the patient had an increased volume of the sub-cortical structures but a decrease of the occipital gray matter. Finally our explorations could not incriminate NTM as a susceptibility gene for ASD, but provides new information on the impact of the 11q24.2-25 deletion on brain anatomy.


Assuntos
Transtorno do Espectro Autista/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11 , Moléculas de Adesão de Célula Nervosa/genética , Adulto , Encéfalo/anormalidades , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Feminino , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Humanos , Síndrome da Deleção Distal 11q de Jacobsen/etiologia , Síndrome da Deleção Distal 11q de Jacobsen/genética , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/genética , Mutação , Polimorfismo de Nucleotídeo Único , Gravidez
8.
PLoS Genet ; 10(9): e1004580, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188300

RESUMO

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Cognitivos/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Estudos de Casos e Controles , Criança , Cognição/fisiologia , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Neurônios/fisiologia , Sinapses/genética
9.
PLoS One ; 9(3): e88600, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594579

RESUMO

Inherited and de novo genomic imbalances at chromosome 16p11.2 are associated with autism spectrum disorders (ASD), but the causative genes remain unknown. Among the genes located in this region, PRRT2 codes for a member of the synaptic SNARE complex that allows the release of synaptic vesicles. PRRT2 is a candidate gene for ASD since homozygote mutations are associated with intellectual disability and heterozygote mutations cause benign infantile seizures, paroxysmal dyskinesia, or hemiplegic migraine. Here, we explored the contribution of PRRT2 mutations in ASD by screening its coding part in a large sample of 1578 individuals including 431 individuals with ASD, 186 controls and 961 individuals from the human genome Diversity Panel. We detected 24 nonsynonymous variants, 1 frameshift (A217PfsX8) and 1 in-frame deletion of 6 bp (p.A361_P362del). The frameshift mutation was observed in a control with no history of neurological or psychiatric disorders. The p.A361_P362del was observed in two individuals with autism from sub-Saharan African origin. Overall, the frequency of PRRT2 deleterious variants was not different between individuals with ASD and controls. Remarkably, PRRT2 displays a highly significant excess of nonsynonymous (pN) vs synonymous (pS) mutations in Asia (pN/pS = 4.85) and Europe (pN/pS = 1.62) compared with Africa (pN/pS = 0.26; Asia vs Africa: P = 0.000087; Europe vs Africa P = 0.00035; Europe vs Asia P = P = 0.084). We also showed that whole genome amplification performed through rolling cycle amplification could artificially introduce the A217PfsX8 mutation indicating that this technology should not be performed prior to PRRT2 mutation screening. In summary, our results do not support a role for PRRT2 coding sequence variants in ASD, but provide an ascertainment of its genetic variability in worldwide populations that should help researchers and clinicians to better investigate the role of PRRT2 in human diseases.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 16 , Variação Genética , Heterozigoto , Humanos , Mutação
10.
J Pineal Res ; 54(1): 46-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22775292

RESUMO

Melatonin is a synchronizer of many physiological processes. Abnormal melatonin signaling is associated with human disorders related to sleep, metabolism, and neurodevelopment. Here, we present the X-ray crystal structure of human N-acetyl serotonin methyltransferase (ASMT), the last enzyme of the melatonin biosynthesis pathway. The polypeptide chain of ASMT consists of a C-terminal domain, which is typical of other SAM-dependent O-methyltransferases, and an N-terminal domain, which intertwines several helices with another monomer to form the physiologically active dimer. Using radioenzymology, we analyzed 20 nonsynonymous variants identified through the 1000 genomes project and in patients with neuropsychiatric disorders. We found that the majority of these mutations reduced or abolished ASMT activity including one relatively frequent polymorphism in the Han Chinese population (N17K, rs17149149). Overall, we estimate that the allelic frequency of ASMT deleterious mutations ranges from 0.66% in Europe to 2.97% in Asia. Mapping of the variants on to the 3-dimensional structure clarifies why some are harmful and provides a structural basis for understanding melatonin deficiency in humans.


Assuntos
Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Sequência de Aminoácidos , Povo Asiático/genética , Cristalografia por Raios X , Frequência do Gene , Humanos , Melatonina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polimorfismo Genético , Alinhamento de Sequência
11.
PLoS Genet ; 8(2): e1002521, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346768

RESUMO

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas do Tecido Nervoso/genética , Deleção de Sequência/genética , Sinapses/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Processamento Alternativo/genética , Linhagem Celular , Criança , Pré-Escolar , Feminino , Dosagem de Genes/genética , Regulação da Expressão Gênica , Humanos , Masculino , Neurônios/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Sinapses/patologia , Distribuição Tecidual , Receptor Nicotínico de Acetilcolina alfa7
12.
J Pineal Res ; 51(4): 394-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21615493

RESUMO

Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration in melatonin signaling has been reported in a broad range of diseases, but little is known about the genetic variability of this pathway in humans. Here, we sequenced all the genes of the melatonin pathway -AA-NAT, ASMT, MTNR1A, MTNR1B and GPR50 - in 321 individuals from Sweden including 101 patients with attention-deficit/hyperactivity disorder (ADHD) and 220 controls from the general population. We could find several damaging mutations in patients with ADHD, but no significant enrichment compared with the general population. Among these variations, we found a splice site mutation in ASMT (IVS5+2T>C) and one stop mutation in MTNR1A (Y170X) - detected exclusively in patients with ADHD - for which biochemical analyses indicated that they abolish the activity of ASMT and MTNR1A. These genetic and functional results represent the first comprehensive ascertainment of melatonin signaling deficiency in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Variação Genética/genética , Melatonina/genética , Acetilserotonina O-Metiltransferasa/genética , Arilalquilamina N-Acetiltransferase/genética , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Receptor MT1 de Melatonina/genética , Receptores Acoplados a Proteínas G/genética
13.
PLoS One ; 6(3): e17289, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21394203

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. METHODOLOGY/PRINCIPAL FINDINGS: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. CONCLUSIONS/SIGNIFICANCE: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 16/genética , Estudos de Associação Genética , Variação Genética , Proteínas de Membrana/genética , Estudos de Casos e Controles , Criança , Feminino , Genética Populacional , Genoma Humano/genética , Humanos , Masculino , Linhagem
14.
PLoS One ; 5(7): e11495, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20657642

RESUMO

Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Delta502-505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Receptores de Melatonina/genética , Adulto , Animais , Células COS , Linhagem Celular , Criança , Chlorocebus aethiops , AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação/genética , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA