Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 33(8): 698-708, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38268317

RESUMO

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas de Homeodomínio/genética , Ensaios Clínicos como Assunto , Músculo Esquelético/metabolismo , Imageamento por Ressonância Magnética , Biomarcadores/metabolismo , Progressão da Doença
2.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865168

RESUMO

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression, but reproducibility across studies needs further validation. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA. Together with moderate-to-strong correlations of gene signatures and MRI characteristics between the TA muscles bilaterally, these results suggest a whole muscle model of disease progression and provide a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design.

3.
Hum Mol Genet ; 29(6): 1030-1043, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32083293

RESUMO

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to the discovery of candidate therapeutics, and it is important to identify markers of disease activity to inform clinical trial design. For drugs that inhibit DUX4 expression, measuring DUX4 or DUX4-target gene expression might be an interim measure of drug activity; however, only a subset of FHSD muscle biopsies shows evidence of DUX4 expression. Our prior study showed that MRI T2-STIR-positive muscles had a higher probability of showing DUX4 expression than muscles with normal MRI characteristics. In the current study, we performed a 1-year follow-up assessment of the same muscle with repeat MRI and muscle biopsy. There was little change in MRI characteristics over the 1-year period and, similar to the initial evaluation, MRI T2-STIR-postive muscles had a higher expression of DUX4-regulated genes, as well as genes associated with inflammation, extracellular matrix and cell cycle. Compared to the initial evaluation, overall the level of expression in these gene categories remained stable over the 1-year period; however, there was some variability for each individual muscle biopsied. The pooled data from both the initial and 1-year follow-up evaluations identified several FSHD subgroups based on gene expression, as well as a set of genes-composed of DUX4-target genes, inflammatory and immune genes and cell cycle control genes-that distinguished all of the FSHD samples from the controls. These candidate markers of disease activity need to be replicated in independent datasets and, if validated, may provide useful measures of disease progression and response to therapy.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , RNA-Seq/métodos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
4.
Hum Mol Genet ; 28(3): 476-486, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312408

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a common, dominantly inherited disease caused by the epigenetic de-repression of the DUX4 gene, a transcription factor normally repressed in skeletal muscle. As targeted therapies are now possible in FSHD, a better understanding of the relationship between DUX4 activity, muscle pathology and muscle magnetic resonance imaging (MRI) changes is crucial both to understand disease mechanisms and for the design of future clinical trials. Here, we performed MRIs of the lower extremities in 36 individuals with FSHD, followed by needle muscle biopsies in safely accessible muscles. We examined the correlation between MRI characteristics, muscle pathology and expression of DUX4 target genes. Results show that the presence of elevated MRI short tau inversion recovery signal has substantial predictive value in identifying muscles with active disease as determined by histopathology and DUX4 target gene expression. In addition, DUX4 target gene expression was detected only in FSHD-affected muscles and not in control muscles. These results support the use of MRI to identify FSHD muscles most likely to have active disease and higher levels of DUX4 target gene expression and might be useful in early phase therapeutic trials to demonstrate target engagement in therapies aiming to suppress DUX4 expression.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Adulto , Idoso , Biópsia , Feminino , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Fatores de Transcrição/genética
5.
Eur J Hum Genet ; 24(1): 78-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25782668

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) predominantly affects the muscles in the face, trunk and upper extremities and is marked by large clinical variability in disease onset and progression. FSHD is associated with partial chromatin relaxation of the D4Z4 repeat array on chromosome 4 and the somatic expression of the D4Z4 encoded DUX4 gene. The most common form, FSHD1, is caused by a contraction of the D4Z4 repeat array on chromosome 4 to a size of 1-10 units. FSHD2, the less common form of FSHD, is most often caused by heterozygous variants in the chromatin modifier SMCHD1, which is involved in the maintenance of D4Z4 methylation. We identified three families in which the proband carries two potentially damaging SMCHD1 variants. We investigated whether these variants were located in cis or in trans and determined their functional consequences by detailed clinical information and D4Z4 methylation studies. In the first family, both variants in trans were shown to act synergistically on D4Z4 hypomethylation and disease penetrance, in the second family both SMCHD1 function-affecting variants were located in cis while in the third family one of the two variants did not affect function. This study demonstrates that having two SMCHD1 missense variants that affect function is compatible with life in males and females, which is remarkable considering its role in X inactivation in mice. The study also highlights the variability in SMCHD1 variants underlying FSHD2 and the predictive value of D4Z4 methylation analysis in determining the functional consequences of SMCHD1 variants of unknown significance.


Assuntos
Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 4 , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Adulto , Idade de Início , Idoso , Sequência de Bases , Cromatina/química , Cromatina/metabolismo , Metilação de DNA , Progressão da Doença , Éxons , Feminino , Expressão Gênica , Loci Gênicos , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/classificação , Distrofia Muscular Facioescapuloumeral/patologia , Linhagem , Penetrância , Fenótipo
6.
Chromosoma ; 116(2): 107-16, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17131163

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease involving shortening of D4Z4, an array of tandem 3.3-kb repeat units on chromosome 4. These arrays are in subtelomeric regions of 4q and 10q and have 1-100 units. FSHD is associated with an array of 1-10 units at 4q35. Unambiguous clinical diagnosis of FSHD depends on determining the array length at 4q35, usually with the array-adjacent p13E-11 probe after pulsed-field or linear gel electrophoresis. Complicating factors for molecular diagnosis of FSHD are the phenotypically neutral 10q D4Z4 arrays, cross-hybridizing sequences elsewhere in the genome, deletions including the genomic p13E-11 sequence and part of D4Z4, translocations between 4q and 10q D4Z4 arrays, and the extremely high G + C content of D4Z4 arrays (73%). In this study, we optimized conditions for molecular diagnosis of FSHD with a 1-kb D4Z4 subfragment probe after hybridization with p13E-11. We demonstrate that these hybridization conditions allow the identification of FSHD alleles with deletions of the genomic p13E-11 sequence and aid in determination of the nonpathogenic D4Z4 arrays at 10q. Furthermore, we show that the D4Z4-like sequences present elsewhere in the genome are not tandemly arranged, like those at 4q35 and 10q26.


Assuntos
Sequência de Bases/genética , Cromossomos Humanos Par 4/genética , Distrofia Muscular Facioescapuloumeral/genética , Deleção de Sequência/genética , Sequências de Repetição em Tandem/genética , Animais , Linhagem Celular , Cromossomos Humanos Par 10/genética , Cricetinae , Cricetulus , Primers do DNA , Sondas de DNA/genética , Eletroforese , Componentes do Gene , Humanos , Immunoblotting , Técnicas de Diagnóstico Molecular/métodos , Países Baixos , Hibridização de Ácido Nucleico/métodos
7.
Am J Hum Genet ; 75(6): 1124-30, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15467981

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is associated with contractions of the D4Z4 repeat in the subtelomere of chromosome 4q. Two allelic variants of chromosome 4q (4qA and 4qB) exist in the region distal to D4Z4. Although both variants are almost equally frequent in the population, FSHD is associated exclusively with the 4qA allele. We identified three families with FSHD in which each proband carries two FSHD-sized alleles and is heterozygous for the 4qA/4qB polymorphism. Segregation analysis demonstrated that FSHD-sized 4qB alleles are not associated with disease, since these were present in unaffected family members. Thus, in addition to a contraction of D4Z4, additional cis-acting elements on 4qA may be required for the development of FSHD. Alternatively, 4qB subtelomeres may contain elements that prevent FSHD pathogenesis.


Assuntos
Alelos , Cromossomos Humanos Par 4/genética , Distrofia Muscular Facioescapuloumeral/genética , Sequências Repetitivas de Ácido Nucleico/genética , Telômero/genética , Southern Blotting , Humanos , Países Baixos , Linhagem
8.
Nat Genet ; 35(4): 315-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634647

RESUMO

The autosomal dominant myopathy facioscapulohumeral muscular dystrophy (FSHD1, OMIM 158900) is caused by contraction of the D4Z4 repeat array on 4qter. We show that this contraction causes marked hypomethylation of the contracted D4Z4 allele in individuals with FSHD1. Individuals with phenotypic FSHD1, who are clinically identical to FSHD1 but have an unaltered D4Z4, also have hypomethylation of D4Z4. These results strongly suggest that hypomethylation of D4Z4 is a key event in the cascade of epigenetic events causing FSHD1.


Assuntos
Cromossomos Humanos Par 4/genética , Metilação de DNA , Distrofia Muscular Facioescapuloumeral/genética , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico/genética , Feminino , Genótipo , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA