Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887106

RESUMO

Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.


Assuntos
Descoberta de Drogas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Descoberta de Drogas/métodos , Proteínas , Cromatografia de Afinidade , Ligação Proteica
2.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979394

RESUMO

The Notch signaling ligand JAG1 is overexpressed in various aggressive tumors and is associated with poor clinical prognosis. Hence, therapies targeting oncogenic JAG1 hold great potential for the treatment of certain tumors. Here, we report the identification of specific anti-JAG1 single-chain variable fragments (scFvs), one of them endowing chimeric antigen receptor (CAR) T cells with cytotoxicity against JAG1-positive cells. Anti-JAG1 scFvs were identified from human phage display libraries, reformatted into full-length monoclonal antibodies (Abs), and produced in mammalian cells. The characterization of these Abs identified two specific anti-JAG1 Abs (J1.B5 and J1.F1) with nanomolar affinities. Cloning the respective scFv sequences in our second- and third-generation CAR backbones resulted in six anti-JAG1 CAR constructs, which were screened for JAG1-mediated T-cell activation in Jurkat T cells in coculture assays with JAG1-positive cell lines. Studies in primary T cells demonstrated that one CAR harboring the J1.B5 scFv significantly induced effective T-cell activation in the presence of JAG1-positive, but not in JAG1-knockout, cancer cells, and enabled specific killing of JAG1-positive cells. Thus, this new anti-JAG1 scFv represents a promising candidate for the development of cell therapies against JAG1-positive tumors.


Assuntos
Imunoterapia Adotiva , Anticorpos de Cadeia Única , Animais , Humanos , Imunoterapia Adotiva/métodos , Ligantes , Linhagem Celular Tumoral , Células Jurkat , Anticorpos de Cadeia Única/genética , Mamíferos/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo
3.
J Med Chem ; 65(13): 9206-9229, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763499

RESUMO

The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time- and dose-dependent downregulation of a proximal biomarker could be shown.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
4.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439228

RESUMO

The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.

5.
N Biotechnol ; 64: 17-26, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33992842

RESUMO

Notch signalling is a well-established oncogenic pathway, and its ligand Delta-like 1 (DLL1) is overexpressed in estrogen receptor-positive (ER+) breast cancers and associated with poor patient prognosis. Hence, DLL1 has become an interesting therapeutic target for breast cancer. Here, the development of specific functional blocking anti-DLL1 antibodies with potential activity against ER+ breast cancer cells is reported. Human DLL1 proteins, containing the essential regions for binding to the Notch receptor and Notch signalling activation, were produced and used to select specific scFv antibody fragments by phage display. Fifteen unique scFvs were identified and reformatted into full IgGs. Characterization of these antibodies by ELISA, surface plasmon resonance and flow cytometry enabled selection of three specific anti-DLL1 IgGs, sharing identical VH regions, with nM affinities. Cellular assays on ER+ breast cancer MCF-7 cells showed that one of the IgGs (IgG-69) was able to partially impair DLL1-mediated activation of the Notch pathway, as determined by Notch reporter and RT-qPCR assays, and to attenuate cell growth. Treatment of MCF-7 cells with IgG-69 reduced mammosphere formation, suggesting that it decreases the breast cancer stem cell subpopulation. These results support the use of this strategy to develop and identify potential anti-DLL1 antibodies candidates against breast cancer.


Assuntos
Neoplasias da Mama , Proteínas de Ligação ao Cálcio/imunologia , Técnicas de Visualização da Superfície Celular , Imunoglobulina G/biossíntese , Proteínas de Membrana/imunologia , Feminino , Humanos , Ligantes , Células MCF-7
6.
Biotechnol Bioeng ; 118(6): 2202-2219, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624859

RESUMO

Serological assays are valuable tools to study SARS-CoV-2 spread and, importantly, to identify individuals that were already infected and would be potentially immune to a virus reinfection. SARS-CoV-2 Spike protein and its receptor binding domain (RBD) are the antigens with higher potential to develop SARS-CoV-2 serological assays. Moreover, structural studies of these antigens are key to understand the molecular basis for Spike interaction with angiotensin converting enzyme 2 receptor, hopefully enabling the development of COVID-19 therapeutics. Thus, it is urgent that significant amounts of this protein became available at the highest quality. In this study, we produced Spike and RBD in two human derived cell hosts: HEK293-E6 and Expi293F™. We evaluated the impact of different and scalable bioprocessing approaches on Spike and RBD production yields and, more importantly, on these antigens' quality attributes. Using negative and positive sera collected from human donors, we show an excellent performance of the produced antigens, assessed in serologic enzyme-linked immunosorbent assay (ELISA) tests, as denoted by the high specificity and sensitivity of the test. We show robust Spike productions with final yields of approx. 2 mg/L of culture that were maintained independently of the production scale or cell culture strategy. To the best of our knowledge, the final yield of 90 mg/L of culture obtained for RBD production, was the highest reported to date. An in-depth characterization of SARS-CoV-2 Spike and RBD proteins was performed, namely the antigen's oligomeric state, glycosylation profiles, and thermal stability during storage. The correlation of these quality attributes with ELISA performance show equivalent reactivity to SARS-CoV-2 positive serum, for all Spike and RBD produced, and for all storage conditions tested. Overall, we provide straightforward protocols to produce high-quality SARS-CoV-2 Spike and RBD antigens, that can be easily adapted to both academic and industrial settings; and integrate, for the first time, studies on the impact of bioprocess with an in-depth characterization of these proteins, correlating antigen's glycosylation and biophysical attributes to performance of COVID-19 serologic tests.


Assuntos
Antígenos Virais/biossíntese , Glicosilação , Glicoproteína da Espícula de Coronavírus/biossíntese , Temperatura Baixa , Ensaio de Imunoadsorção Enzimática/normas , Congelamento , Células HEK293 , Humanos , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/normas , SARS-CoV-2 , Testes Sorológicos/normas , Glicoproteína da Espícula de Coronavírus/normas
7.
RSC Chem Biol ; 1(4): 251-262, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458764

RESUMO

The bone marrow tyrosine kinase in chromosome X (BMX) is pursued as a drug target because of its role in various pathophysiological processes. We designed BMX covalent inhibitors with single-digit nanomolar potency with unexploited topological pharmacophore patterns. Importantly, we reveal the first X-ray crystal structure of covalently inhibited BMX at Cys496, which displays key interactions with Lys445, responsible for hampering ATP catalysis and the DFG-out-like motif, typical of an inactive conformation. Molecular dynamic simulations also showed this interaction for two ligand/BMX complexes. Kinome selectivity profiling showed that the most potent compound is the strongest binder, displays intracellular target engagement in BMX-transfected cells with two-digit nanomolar inhibitory potency, and leads to BMX degradation PC3 in cells. The new inhibitors displayed anti-proliferative effects in androgen-receptor positive prostate cancer cells that where further increased when combined with known inhibitors of related signaling pathways, such as PI3K, AKT and Androgen Receptor. We expect these findings to guide development of new selective BMX therapeutic approaches.

9.
Int J Med Educ ; 5: 157-64, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25341225

RESUMO

OBJECTIVE: The aim of the study was to develop and consider the usefulness of a new mixed-methods approach to evaluate the student-centredness of teaching and learning on undergraduate medical courses. An essential paradigm for the evaluation was the coherence between how teachers conceptualise their practice (espoused theories) and their actual practice (theories-in-use). METHODS: The context was a module within an integrated basic sciences course in an undergraduate medical degree programme. The programme had an explicit intention of providing a student-centred curriculum. A content analysis framework based on Weimer's dimensions of student-centred teaching was used to analyze data collected from individual interviews with seven teachers to identify espoused theories and 34h of classroom observations and one student focus group to identify theories-in-use. The interviewees were identified by purposeful sampling. The findings from the three methods were triangulated to evaluate the student-centredness of teaching and learning on the course. RESULTS: Different, but complementary, perspectives of the student-centredness of teaching and learning were identified by each method. The triangulation of the findings revealed coherence between the teachers' espoused theories and theories-in-use. CONCLUSIONS: A mixed-methods approach that combined classroom observations with interviews from a purposeful sample of teachers and students offered a useful evaluation of the extent of student-centredness of teaching and learning of this basic science course. Our case study suggests that this new approach is applicable to other courses in medical education.


Assuntos
Currículo , Educação de Graduação em Medicina/métodos , Docentes de Medicina , Estudantes de Medicina , Feminino , Grupos Focais , Humanos , Aprendizagem , Masculino , Ensino/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA