Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1219581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720141

RESUMO

Spore-forming bacteria of the Bacillus subtilis group are responsible for recurrent contamination of processing lines in the food industry which can lead to food spoilage. The persistence of B. subtilis would be due to the high resistance of spores to extreme environmental condition and their propensity to contaminate surfaces. While it is well known that sporulation conditions modulate spore resistance properties, little is known about their effect on surface and adhesion properties. Here, we studied the impact of 13 sporulation conditions on the surface and adhesion properties of B. subtilis 168 spores. We showed that Ca2+ or Mg2+ depletion, lower oxygen availability, acidic pH as well as oxidative stresses during sporulation lead to the release of more hydrophobic and adherent spores. The consequences of these sporulation conditions on crust composition in carbohydrates and proteins were also evaluated. The crust glycans of spores produced in a sporulation medium depleted in Ca2+ or Mg2+ or oxygen-limited conditions were impaired and contained lower amounts of rhamnose and legionaminic acid. In addition, we showed that lower oxygen availability or addition of hydrogen peroxide during sporulation decreases the relative amount of two crust proteins (CgeA and CotY) and the changes observed in these conditions could be due to transcriptional repression of genes involved in crust synthesis in late stationary phase. The fact that sporulation conditions affect the ease with which spores can contaminate surfaces could explain the frequent and recurrent presence of B. subtilis spores in food processing lines.

2.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770605

RESUMO

In the food industry, the surfaces of processing equipment are considered to be major factors in the risk of food contamination. The cleaning process of solid surfaces is essential, but it requires a significant amount of water and chemicals. Herein, we report the use of foam flows based on alkyl polyglucosides (APGs) to remove spores of Bacillus subtilis on stainless-steel surfaces as the model-contaminated surface. Sodium dodecyl sulfate (SDS) was also studied as an anionic surfactant. Foams were characterized during flows by measuring the foam stability and the bubble size. The efficiency of spores' removal was assessed by enumerations. We showed that foams based on APGs could remove efficiently the spores from the surfaces, but slightly less than foams based on SDS due to an effect of SDS itself on spores removal. The destabilization of the foams at the end of the process and the recovery of surfactant solutions were also evaluated by using filtration. Following a life cycle assessment (LCA) approach, we evaluated the impact of the foam flow on the global environmental footprint of the process. We showed significant environmental impact benefits with a reduction in water and energy consumption for foam cleaning. APGs are a good choice as surfactants as they decrease further the environmental impacts.

3.
mBio ; 11(4)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817102

RESUMO

The crust is the outermost spore layer of most Bacillus strains devoid of an exosporium. This outermost layer, composed of both proteins and carbohydrates, plays a major role in the adhesion and spreading of spores into the environment. Recent studies have identified several crust proteins and have provided insights about their organization at the spore surface. However, although carbohydrates are known to participate in adhesion, little is known about their composition, structure, and localization. In this study, we showed that the spore surface of Bacillus subtilis is covered with legionaminic acid (Leg), a nine-carbon backbone nonulosonic acid known to decorate the flagellin of the human pathogens Helicobacter pylori and Campylobacter jejuni We demonstrated that the spsC, spsD, spsE, spsG, and spsM genes of Bacillus subtilis are required for Leg biosynthesis during sporulation, while the spsF gene is required for Leg transfer from the mother cell to the surface of the forespore. We also characterized the activity of SpsM and highlighted an original Leg biosynthesis pathway in B. subtilis Finally, we demonstrated that Leg is required for the assembly of the crust around the spores, and we showed that in the absence of Leg, spores were more adherent to stainless steel probably because of their reduced hydrophilicity and charge.IMPORTANCEBacillus species are a major economic and food safety concern of the food industry because of their food spoilage-causing capability and persistence. Their persistence is mainly due to their ability to form highly resistant spores adhering to the surfaces of industrial equipment. Spores of the Bacillus subtilis group are surrounded by the crust, a superficial layer which plays a key role in their adhesion properties. However, knowledge of the composition and structure of this layer remains incomplete. Here, for the first time, we identified a nonulosonic acid (Leg) at the surfaces of bacterial spores (B. subtilis). We uncovered a novel Leg biosynthesis pathway, and we demonstrated that Leg is required for proper crust assembly. This work contributes to the description of the structure and composition of Bacillus spores which has been under way for decades, and it provides keys to understanding the importance of carbohydrates in Bacillus adhesion and persistence in the food industry.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Vias Biossintéticas , Ácidos Siálicos/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Parede Celular/fisiologia , Ácidos Siálicos/genética , Esporos Bacterianos/metabolismo
4.
Microbiology (Reading) ; 166(4): 398-410, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067627

RESUMO

The transcriptional regulator PlcR, its cognate cell-cell signaling heptapeptide PapR7, and the oligopeptide permease OppABCDF, required for PapR7 import, form a quorum-sensing system that controls the expression of virulence factors in Bacillus cereus and Bacillus thuringiensis species. In B. cereus strain ATCC 14579, the transcriptional regulator PlcRa activates the expression of abrB2 gene, which encodes an AbrB-like transcriptional regulator involved in cysteine biosynthesis. PlcRa is a structural homolog of PlcR: in particular, its C-terminal TPR peptide-binding domain could be similarly arranged as in PlcR. The signaling peptide of PlcRa is not known. As PlcRa is a PlcR-like protein, the cognate PapR7 peptide (ADLPFEF) is a relevant candidate to act as a signaling peptide for PlcRa activation. Also, the putative PapRa7 peptide (CSIPYEY), encoded by the papRa gene adjacent to the plcRa gene, is a relevant candidate as addition of synthetic PapRa7 induces a dose-dependent increase of abrB2 expression. To address the issue of peptide selectivity of PlcRa, the role of PapR and PapRa peptides in PlcRa activity was investigated in B. thuringiensis 407 strain, by genetic and functional complementation analyses. A transcriptional fusion between the promoter of abrB2 and lacZ was used to monitor the PlcRa activity in various genetic backgrounds. We demonstrated that PapR was necessary and sufficient for PlcRa activity. We showed that synthetic PapRs from pherogroups II, III and IV and synthetic PapRa7 were able to trigger abrB2 expression, suggesting that PlcRa is less selective than PlcR. Lastly, the mode of binding of PlcRa was addressed using an in silico approach. Overall, we report a new role for PapR as a signaling peptide for PlcRa activity and show a functional link between PlcR and PlcRa regulons in B. thuringiensis.


Assuntos
Bacillus thuringiensis/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Percepção de Quorum , Transativadores/metabolismo , Sequência de Aminoácidos , Bacillus thuringiensis/genética , Bacillus thuringiensis/crescimento & desenvolvimento , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Transativadores/química , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Mol Microbiol ; 113(4): 740-754, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793098

RESUMO

Cell differentiation within an isogenic population allows the specialisation of subpopulations and a division of labour. Bacillus thuringiensis is a spore-forming bacterium that produces insecticidal crystal proteins (Cry proteins) in sporulating cells. We recently reported that strain B. thuringiensis LM1212 presents the unique ability to differentiate into two subpopulations during the stationary phase: spore-formers and crystal-producers. Here, we characterised the transcriptional regulator CpcR responsible for this differentiation and the expression of the cry genes. cpcR is located on a plasmid that also harbours cry genes. The alignment of LM1212 cry gene promoters revealed the presence of a conserved DNA sequence upstream from the -35 region. This presumed CpcR box was also found in the promoter of cpcR and we showed that cpcR transcription is positively autoregulated. Electrophoretic mobility shift assays suggested that CpcR directly controls the transcription of its target genes by binding to the CpcR box. We showed that CpcR was able to direct the production of a crystal consisting of a heterologous insecticidal Cry protein in non-sporulating cells of a typical B. thuringiensis kurstaki strain. Moreover, the expression of cpcR induced a reduction in the sporulation of this B. thuringiensis strain, suggesting an interaction between CpcR and the sporulation regulatory networks.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Esporos Bacterianos
6.
Colloids Surf B Biointerfaces ; 182: 110398, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376688

RESUMO

The current experimental study investigates the influence of latex microsphere particles' size on the assessment of their hydrophilic/hydrophobic character, using the method known as "Microbial Adhesion to Hydrocarbons" (MATH). Since bacteria surfaces often change according to the environment in which they find themselves, most of the experiments here were carried out using the calibrated latex microspheres Polybeads® and Yellow-green Fluoresbrite® (Polyscience) microspheres with diameters between 0.2 µm and 4.5 µm. All the beads had a density of ˜1.05 g/cm3. The first set of experiments was performed to adapt the procedure for measurements of water contact angles to microsphere lawns. It was found that all the microspheres tested were hydrophobic, when using a water contact angle of around 110-118°. However, wide differences were observed using the MATH method. The smaller microspheres (0.2 µm, 0.5 µm +/- 0.75 µm) exhibited a poor affinity to hexadecane, even after long contact times, suggesting a hydrophilic character. In contrast, larger microspheres quickly adhered to hexadecane, which is consistent with the values obtained for the water contact angles observed. These results suggest that, at least where hydrophobic particles are concerned, the MATH method is not suitable for the assessment of the hydrophobic character of particles with diameters of less than 1.0 µm. We lastly investigated whether the data obtained for Bacillus spores could also be affected by spore size. The hydrophobicity of spores of eight Bacillus strains was analysed by both MATH and contact angle. Some discrepancies were observed between both methods but could not be related their size (length or width).


Assuntos
Bacillus/metabolismo , Aderência Bacteriana , Hidrocarbonetos/metabolismo , Látex/metabolismo , Microesferas , Esporos Bacterianos/metabolismo , Alcanos/química , Alcanos/metabolismo , Bacillus/classificação , Hidrocarbonetos/química , Interações Hidrofóbicas e Hidrofílicas , Látex/química , Tamanho da Partícula , Esporos Bacterianos/química , Propriedades de Superfície , Água/química , Água/metabolismo
7.
Mol Microbiol ; 112(1): 219-232, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31017318

RESUMO

The infectious cycle of Bacillus thuringiensis in the insect host is regulated by quorum sensors of the RNPP family. The activity of these regulators is modulated by their cognate signaling peptides translocated into the bacterial cells by oligopeptide permeases (Opp systems). In B. thuringiensis, the quorum sensor NprR is a bi-functional regulator that connects sporulation to necrotrophism. The binding of the signaling peptide NprX switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. Here, we report that NprX is imported into the bacterial cells by two different oligopeptide permease systems. The first one is Opp, the system known to be involved in the import of the signaling peptide PapR in B. thuringiensis and Bacillus cereus. The second, designated as Npp (NprX peptide permease), was not previously described. We show that at least two substrate binding proteins (SBPs) are able to translocate NprX through OppBCDF. In contrast, we demonstrate that a unique SBP (NppA) can translocate NprX through NppDFBC. We identified the promoter of the npp operon, and we showed that transcription starts at the onset of stationary phase and is repressed by the nutritional regulator CodY during the exponential growth phase.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bacillus thuringiensis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas/fisiologia , Percepção de Quorum/fisiologia , Esporos Bacterianos/metabolismo , Fatores de Transcrição/metabolismo
8.
Res Microbiol ; 168(4): 356-368, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27353188

RESUMO

Bacteria of the Bacillus genus are able to synthesize several families of lipopeptides. These small molecules are the product of non-ribosomal peptide synthetases. In 2000, it was found that Bacillus thuringiensis, an entomopathogenic bacterium of the Bacillus cereus group, produced a previously unknown lipopeptide: kurstakin. Genomic analyses reveal that the krs locus, encoding the kurstakin synthetases, is specific to the B. cereus group, but is unevenly distributed within this group. Previous work showed that krs transcription requires the necrotrophism quorum-sensor NprR. Here, we demonstrated that the genes of the krs locus form an operon and we defined its transcription start site. Following krs transcription at the population and single-cell levels in multiple culture conditions, we depicted a condition-dependent transcription pattern, indicating that production of kurstakin is subject to environmental regulation. Consistent with this idea, we found krs transcription to be regulated by another master regulator, Spo0A, suggesting that krs expression is fine-tuned by integrating multiple signals. We also reported an unknown DNA palindrome in the krs promoter region that modulates krs expression. Due to their surfactant properties, lipopeptides could play several physiological roles. We showed that the krs locus was required for proper biofilm structuration.


Assuntos
Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Lipopeptídeos/genética , Biossíntese de Peptídeos Independentes de Ácido Nucleico/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/metabolismo , Óperon/genética , Regiões Promotoras Genéticas , Percepção de Quorum/genética
10.
ISME J ; 9(2): 286-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25083932

RESUMO

A major challenge in bacterial developmental biology has been to understand the mechanisms underlying cell fate decisions. Some differentiated cell types display cooperative behaviour. Cooperation is one of the greatest mysteries of evolutionary biology and microbes have been considered as an excellent system for experimentally testing evolution theories. Bacillus thuringiensis (Bt) is a spore-forming bacterium, which is genetically closely related to B. anthracis, the agent of anthrax, and to B. cereus, an opportunistic human pathogen. The defining feature that distinguishes Bt from its relatives is its ability to produce crystal inclusions in the sporulating cells. These toxins are solubilized after ingestion and are cooperative public goods in insect hosts. In this study, we describe a Bt strain LM1212 that presents the unique ability to terminally differentiate into crystal producers and spore formers. Transcriptional analysis based on lacZ and gfp reporter genes suggested that this phenotype is the consequence of a new type of cell differentiation associated with a novel regulation mode of cry gene expression. The differentiating crystal-producer phenotype has higher spore productivity than a typical Bt strain and is better able to compete with Cry toxin null 'cheaters'. Potentially, this division of labour provides additional fitness benefits in terms of spore viability or durability of Cry toxin.


Assuntos
Bacillus thuringiensis/citologia , Proteínas de Bactérias/biossíntese , Endotoxinas/biossíntese , Proteínas Hemolisinas/biossíntese , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/ultraestrutura , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Interações Microbianas , Fenótipo , Esporos Bacterianos/ultraestrutura
11.
Front Microbiol ; 6: 1501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779156

RESUMO

In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth.

12.
Mol Microbiol ; 88(1): 48-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388036

RESUMO

NprR is a quorum sensor of the RNPP family found in bacteria of the Bacillus cereus group. In association with its cognate peptide NprX, NprR controls the expression of genes essential for survival and sporulation of Bacillus thuringiensis during its necrotrophic development in insects. Here, we report that the nprR-nprX genes are not autoregulated and are co-transcribed from a σ(A) -dependent promoter (PA ) located upstream from nprR. The transcription from PA starts at the onset of the stationary phase and is controlled by two transcriptional regulators: CodY and PlcR. The nutritional repressor CodY represses nprR-nprX transcription during the exponential growth phase and the quorum sensor PlcR activates nprR-nprX transcription at the onset of stationary phase. We show that nprX is also transcribed independently of nprR from two promoters, PH and PE , dependent on the sporulation-specific sigma factors, σ(H) and σ(E) respectively. Both promoters ensure nprX transcription during late stationary phase while transcription from PA has decreased. These results show that the activity of the NprR-NprX quorum sensing system is tightly co-ordinated to the physiological stage throughout the developmental process of the Bacillus.


Assuntos
Bacillus thuringiensis/citologia , Bacillus thuringiensis/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Bacillus thuringiensis/genética , Sequência de Bases , Loci Gênicos/genética , Modelos Genéticos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica
13.
PLoS Pathog ; 8(4): e1002629, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511867

RESUMO

How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading.


Assuntos
Bacillus thuringiensis/fisiologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Insetos/microbiologia , Percepção de Quorum/fisiologia , Animais , Proteínas de Bactérias/genética , Mutação
14.
Mol Microbiol ; 82(3): 619-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21958299

RESUMO

In sporulating Bacillus, major processes like virulence gene expression and sporulation are regulated by communication systems involving signalling peptides and regulators of the RNPP family. We investigated the role of one such regulator, NprR, in bacteria of the Bacillus cereus group. We show that NprR is a transcriptional regulator whose activity depends on the NprX signalling peptide. In association with NprX, NprR activates the transcription of an extracellular protease gene (nprA) during the first stage of the sporulation process. The transcription start site of the nprA gene has been identified and the minimal region necessary for full activation has been characterized by promoter mutagenesis. We demonstrate that the NprX peptide is secreted, processed and then reimported within the bacterial cell. Once inside the cell, the mature form of NprX, presumably the SKPDIVG heptapeptide, directly binds to NprR allowing nprA transcription. Alignment of available NprR sequences from different species of the B. cereus group defines seven NprR clusters associated with seven NprX heptapeptide classes. This cell-cell communication system was found to be strain-specific with a possible cross-talk between some pherotypes. The phylogenic relationship between NprR and NprX suggests a coevolution of the regulatory protein and its signalling peptide.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Peptídeo Hidrolases/biossíntese , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Bacillus cereus/enzimologia , Sequência de Bases , Análise Mutacional de DNA , Dados de Sequência Molecular , Mutagênese , Filogenia , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA