Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Surg Case Rep ; 120: 109751, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823229

RESUMO

INTRODUCTION AND CLINICAL RELEVANCE: Acute esophageal necrosis (AEN) is a condition characterized by the necrosis of the distal portion of the esophageal mucosa. Risk factors predisposing to this condition are associated to compromised vascular perfusion (e.g. diabetes mellitus, chronic kidney disease, advanced age, and hypertension, shock states). Complications of AEN can be severe including UGI stricture, perforation and overall increased mortality. The true incidence of AEN remains uncertain due to potential subclincal presentations and early resolution. CASE PRESENTATION: The case outlined involves a 66-years-old obese male with history of alcoholism and lymph-edema of the left leg who presented to the emergency department with hematemesis, haemodynamic instability and impaired consciousness. Shortly after initial assessment, the patient went into cardiac arrest with pulse-less electrical activity (PEA). Return of spontaneous circulation (ROSC) was achieved following instigation of ALS protocol, fluid resuscitation and the administration of a total of 5 mg of adrenaline. Following stabilization, a CT scan was performed which reported a moderately enlarged esophagus with a thickened wall, liquid hypodense material within the esophagus and stomach, and liver cirrhosis. The emergent esophagogastroduodenoscopy (EGDS) revealed extensive mucosal findings indicative of diffuse necrosis with initial scarring, which was later diagnosed as AEN. The patient unfortunately deceased in ICU after developing progression of the AEN, post-cardiac arrest syndrome and liver failure. CLINICAL DISCUSSION: The presented case highlights several crucial clinical issues and management problems related to AEN. To diagnose AEN, EGDS is still the gold-standard since it allows direct inspection of the esophageal mucosal layer. The management of AEN necessitates a multidisciplinary approach that includes aggressive resuscitation, treatment of underlying comorbidities, and supportive care (e.g. proton pump inhibitors). The mortality rate for AEN remains high despite improvements in diagnosis and treatment highlighting the need to recognize this condition early and intervene promptly in the patients affected. Moreover, long-term sequelae like stricture formation of the esophagus and impaired esophageal motility may contribute to morbidity requiring continuos monitoring. Therefore, to optimize outcomes while reducing complications among affected patients, prompt identification associated with appropriate medical measures are essential. More research needs to be done aiming to better understand the pathophysiology of AEN thereby identifying strategies for its prevention or cure. CONCLUSIONS: AEN is a rare syndrome characterized by upper gastrointestinal bleeding and hypoxic damage of the esophageal mucosa, often associated with ischemia, gastric outlet obstruction, and compromised protective barriers. Treatment involves aggressive resuscitation, proton pump inhibitors, and monitoring for infection or perforation. However, despite intensive efforts, the mortality rate for AEN remains high at 32 %.

2.
Respir Care ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744475

RESUMO

BACKGROUND: Patients with obesity are at increased risk of postoperative pulmonary complications. CPAP has been used successfully to prevent and treat acute respiratory failure, but in many clinical scenarios, high-flow nasal cannula (HFNC) therapy is emerging as a possible alternative. We aimed to compare HFNC and CPAP in a sequential study measuring their effects on gas exchange, lung volumes, and gas distribution within the lungs measured through electrical impedance tomography (EIT). METHODS: We enrolled 15 subjects undergoing laparoscopic bariatric surgery. Postoperatively they underwent the following oxygen therapy protocol (10 min/step): baseline air-entrainment mask, HFNC at increasing (40, 60, 80, and 100 L/min) and decreasing flows (80, 60, and 40 L/min), washout air-entrainment mask and CPAP (10 cm H2O). Primary outcome was the change in end-expiratory lung impedance (ΔEELI) measured by EIT data processing. Secondary outcomes were changes of global inhomogeneity (GI) index and tidal impedance variation (TIV) measured by EIT, arterial oxygenation, carbon dioxide content, pH, respiratory frequency, and subject's comfort. RESULTS: Thirteen subjects completed the study. Compared to baseline, ΔEELI was higher during 10 cm H2O CPAP (P = .001) and HFNC 100 L/min (P = .02), as well as during decreasing flows HFNC 80, 60, and 40 L/min (P = .008, .004, and .02, respectively). GI index was lower during HFNC 100 compared to HFNC 60increasing (P = .044), HFNC 60decreasing (P = .02) HFNC 40decreasing (P = .01), and during 10 cm H2O CPAP compared to washout period (P = .01) and HFNC 40decreasing (P = .03). TIV was higher during 10 cm H2O CPAP compared to baseline (P = .008). Compared to baseline, breathing frequency was lower at HFNC 60increasing, HFNC 100, and HFNC 80decreasing (P = .01, .02, and .03, respectively). No differences were detected regarding arterial oxygenation, carbon dioxide content, pH, and subject's comfort. CONCLUSIONS: HFNC at a flow of 100 L/min induced postoperative pulmonary recruitment in bariatric subjects, with no significant differences compared to 10 cm H2O CPAP in terms of lung recruitment and ventilation distribution.

3.
J Clin Monit Comput ; 36(5): 1499-1508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34964083

RESUMO

Breathing asynchronies are mismatches between the requests of mechanically ventilated subjects and the support provided by mechanical ventilators. The most widespread technique in identifying these pathological conditions is the visual analysis of the intra-tracheal pressure and flow time-trends. This work considers a recently introduced pressure-flow representation technique and investigates whether it can help nurses in the early detection of anomalies that can represent asynchronies. Twenty subjects-ten Intensive Care Unit (ICU) nurses and ten persons inexperienced in medical practice-were asked to find asynchronies in 200 breaths pre-labeled by three experts. The new representation increases significantly the detection capability of the subjects-average sensitivity soared from 0.622 to 0.905-while decreasing the classification time-from 1107.0 to 567.1 s on average-at the price of a not statistically significant rise in the number of wrong identifications-specificity average descended from 0.589 to 0.52. Moreover, the differences in experience between the nurse group and the inexperienced group do not affect the sensitivity, specificity, or classification times. The pressure-flow diagram significantly increases sensitivity and decreases the response time of early asynchrony detection performed by nurses. Moreover, the data suggest that operator experience does not affect the identification results. This outcome leads us to believe that, in emergency contexts with a shortage of nurses, intensive care nurses can be supplemented, for the sole identification of possible respiratory asynchronies, by inexperienced staff.


Assuntos
Respiração Artificial , Ventiladores Mecânicos , Humanos , Unidades de Terapia Intensiva , Respiração , Respiração Artificial/métodos , Taxa Respiratória
4.
Respir Care ; 66(9): 1389-1397, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34230215

RESUMO

BACKGROUND: This was a pilot study to analyze the effects of tracheostomy on patient-ventilator asynchronies and respiratory system mechanics. Data were extracted from an ongoing prospective, real-world database that stores continuous output from ventilators and bedside monitors. Twenty adult subjects were on mechanical ventilation and were tracheostomized during an ICU stay: 55% were admitted to the ICU for respiratory failure and 35% for neurologic conditions; the median duration of mechanical ventilation before tracheostomy was 12 d; and the median duration of mechanical ventilation was 16 d. METHODS: We compared patient-ventilator asynchronies (the overall asynchrony index and the rates of specific asynchronies) and respiratory system mechanics (respiratory-system compliance and airway resistance) during the 24 h before tracheostomy versus the 24 h after tracheostomy. We analyzed possible differences in these variables among the subjects who underwent surgical versus percutaneous tracheostomy. To compare longitudinal changes in the variables, we used linear mixed-effects models for repeated measures along time in different observation periods. A total of 920 h of mechanical ventilation were analyzed. RESULTS: Respiratory mechanics and asynchronies did not differ significantly between the 24-h periods before and after tracheostomy: compliance of the respiratory system median (IQR) (47.9 [41.3 - 54.6] mL/cm H2O vs 47.6 [40.9 - 54.3] mL/cm H2O; P = .94), airway resistance (9.3 [7.5 - 11.1] cm H2O/L/s vs 7.0 [5.2 - 8.8] cm H2O/L/s; P = .07), asynchrony index (2.0% [1.1 - 3.6%] vs 4.1% [2.3 - 7.6%]; P = .09), ineffective expiratory efforts (0.9% [0.4 - 1.8%] vs 2.2% [1.0 - 4.4%]; P = .08), double cycling (0.5% [0.3 - 1.0%] vs 0.9% [0.5 - 1.9%]; P = .24), and percentage of air trapping (7.6% [4.2 - 13.8%] vs 10.6% [5.9 - 19.2%]; P = .43). No differences in respiratory mechanics or patient-ventilator asynchronies were observed between percutaneous and surgical procedures. CONCLUSIONS: Tracheostomy did not affect patient-ventilator asynchronies or respiratory mechanics within 24 h before and after the procedure.


Assuntos
Traqueostomia , Ventiladores Mecânicos , Adulto , Humanos , Pulmão , Projetos Piloto , Estudos Prospectivos , Respiração Artificial , Mecânica Respiratória
5.
J Clin Monit Comput ; 35(2): 289-296, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31993892

RESUMO

Ineffective effort during expiration (IEE) occurs when there is a mismatch between the demand of a mechanically ventilated patient and the support delivered by a Mechanical ventilator during the expiration. This work presents a pressure-flow characterization for respiratory asynchronies and validates a machine-learning method, based on the presented characterization, to identify IEEs. 1500 breaths produced by 8 mechanically-ventilated patients were considered: 500 of them were included into the training set and the remaining 1000 into the test set. Each of them was evaluated by 3 experts and classified as either normal, artefact, or containing inspiratory, expiratory, or cycling-off asynchronies. A software implementing the proposed method was trained by using the experts' evaluations of the training set and used to identify IEEs in the test set. The outcomes were compared with a consensus of three expert evaluations. The software classified IEEs with sensitivity 0.904, specificity 0.995, accuracy 0.983, positive and negative predictive value 0.963 and 0.986, respectively. The Cohen's kappa is 0.983 (with 95% confidence interval (CI): [0.884, 0.962]). The pressure-flow characterization of respiratory cycles and the monitoring technique proposed in this work automatically identified IEEs in real-time in close agreement with the experts.


Assuntos
Respiração Artificial , Ventiladores Mecânicos , Expiração , Humanos , Aprendizado de Máquina
6.
J Clin Monit Comput ; 35(4): 885-890, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588314

RESUMO

To provide an in vitro estimation of the pressure drop across tracheal tubes (ΔPTT) in the face of given pulsatile frequencies and peak pressures (Pwork) delivered by a high-frequency percussive ventilator (HFPV) applied to a lung model. Tracheal tubes (TT) 6.5, 7.5 and 8.0 were connected to a test lung simulating the respiratory system resistive (R = 5, 20, 50 cmH2O/L/s) and elastic (C = 10, 20, and 50 mL/cmH2O) loads. The model was ventilated by HFPV with a pulse inspiratory peak pressure (work pressure Pwork) augmented in 5-cmH2O steps from 20 to 45 cmH2O, yielding 6 diverse airflows. The percussive frequency (f) was set to 300, 500 and 700 cycles/min, respectively. Pressure (Paw and Ptr) and flow (V') measurements were performed for all 162 possible combinations of loads, frequencies, and work pressures for each TT size, thus yielding 486 determinations. For each respiratory cycle ΔPTT was calculated by subtracting each peak Ptr from its corresponding peak Paw. A non-linear model was constructed to assess the relationships between single parameters. Performance of the produced model was measured in terms of root mean square error (RMSE) and the coefficient of determination (r2). ΔPTT was predicted by Pwork (exponential Gaussian relationship), resistance (quadratic and linear terms), frequency (quadratic and linear terms) and tube diameter (linear term), but not by compliance. RMSE of the model on the testing dataset was 1.17 cmH2O, r2 was 0.79 and estimation error was lower than 1 cmH2O in 68% of cases. As a result, even without a flow value, the physician would be able to evaluate ΔPTT pressure. If the present results of our bench study could be clinically confirmed, the use of a nonconventional ventilatory strategy as HFPV, would be safer and easier.


Assuntos
Ventilação de Alta Frequência , Humanos , Pulmão , Respiração , Respiração Artificial
7.
Crit Care ; 23(1): 245, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277722

RESUMO

BACKGROUND: In critically ill patients, poor patient-ventilator interaction may worsen outcomes. Although sedatives are often administered to improve comfort and facilitate ventilation, they can be deleterious. Whether opioids improve asynchronies with fewer negative effects is unknown. We hypothesized that opioids alone would improve asynchronies and result in more wakeful patients than sedatives alone or sedatives-plus-opioids. METHODS: This prospective multicenter observational trial enrolled critically ill adults mechanically ventilated (MV) > 24 h. We compared asynchronies and sedation depth in patients receiving sedatives, opioids, or both. We recorded sedation level and doses of sedatives and opioids. BetterCare™ software continuously registered ineffective inspiratory efforts during expiration (IEE), double cycling (DC), and asynchrony index (AI) as well as MV modes. All variables were averaged per day. We used linear mixed-effects models to analyze the relationships between asynchronies, sedation level, and sedative and opioid doses. RESULTS: In 79 patients, 14,166,469 breaths were recorded during 579 days of MV. Overall asynchronies were not significantly different in days classified as sedatives-only, opioids-only, and sedatives-plus-opioids and were more prevalent in days classified as no-drugs than in those classified as sedatives-plus-opioids, irrespective of the ventilatory mode. Sedative doses were associated with sedation level and with reduced DC (p < 0.0001) in sedatives-only days. However, on days classified as sedatives-plus-opioids, higher sedative doses and deeper sedation had more IEE (p < 0.0001) and higher AI (p = 0.0004). Opioid dosing was inversely associated with overall asynchronies (p < 0.001) without worsening sedation levels into morbid ranges. CONCLUSIONS: Sedatives, whether alone or combined with opioids, do not result in better patient-ventilator interaction than opioids alone, in any ventilatory mode. Higher opioid dose (alone or with sedatives) was associated with lower AI without depressing consciousness. Higher sedative doses administered alone were associated only with less DC. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03451461.


Assuntos
Analgésicos Opioides/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Respiração Artificial/métodos , Mecânica Respiratória/efeitos dos fármacos , Idoso , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Estado Terminal/terapia , Feminino , Humanos , Hipnóticos e Sedativos/efeitos adversos , Hipnóticos e Sedativos/farmacologia , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Respiração Artificial/efeitos adversos , Respiração Artificial/instrumentação , Espanha
8.
Eur J Cardiothorac Surg ; 53(5): 932-938, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29236967

RESUMO

Video-assisted thoracoscopic surgery is a widespread technique that has been linked to improved postoperative respiratory function, reduced hospital length of stay and a higher level of tolerability for the patients. Acute postoperative pain is of considerable significance, and the late development of neuropathic pain syndrome is also an issue. As anaesthesiologists, we have investigated the available evidence to optimize postoperative pain management. An opioid-sparing multimodal approach is highly recommended. Loco-regional techniques such as the thoracic epidural and peripheral blocks can be performed. Several adjuvants have been employed with varying degrees of success both intravenously and in combination with local anesthetics. Opioids with different pharmacodynamic and pharmacokinetic profiles can be used, either through continuous infusion or on demand. Non-opioid analgesics are also beneficial. Finally, perioperative gabapentinoids may be implemented to prevent the onset of chronic neuropathic pain.


Assuntos
Analgésicos , Dor Pós-Operatória/tratamento farmacológico , Pneumonectomia/efeitos adversos , Cirurgia Torácica Vídeoassistida/efeitos adversos , Acetaminofen/administração & dosagem , Acetaminofen/uso terapêutico , Analgésicos/administração & dosagem , Analgésicos/uso terapêutico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Humanos , Bloqueio Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA