Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(5): 052502, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595235

RESUMO

We report on new measurements establishing the existence of low-lying isomeric states in ^{136}Cs using γ rays produced in ^{136}Xe(p,n)^{136}Cs reactions. Two states with O(100) ns lifetimes are placed in the decay sequence of the ^{136}Cs levels that are populated in charged-current interactions of solar neutrinos and fermionic dark matter with ^{136}Xe. Xenon-based experiments can therefore exploit a delayed-coincidence tag of these interactions, greatly suppressing backgrounds to enable spectroscopic studies of solar neutrinos and dark matter.

2.
Phys Rev Lett ; 131(5): 052501, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595245

RESUMO

We used the ^{138}Ba(d,α) reaction to carry out an in-depth study of states in ^{136}Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1^{+} level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments. We identify for the first time candidate metastable states in ^{136}Cs, which would allow a real-time detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for ^{136}Xe neutrinoless double beta decay. We find that one of these Hamiltonians, which also systematically underestimates the NME compared with the others, dramatically fails to describe the observed low-energy ^{136}Cs spectrum, while the other two show reasonably good agreement.

3.
Phys Rev Lett ; 123(23): 231106, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868502

RESUMO

Dual-phase xenon detectors lead the search for keV-scale nuclear recoil signals expected from the scattering of weakly interacting massive particle (WIMP) dark matter, and can potentially be used to study the coherent nuclear scattering of MeV-scale neutrinos. New capabilities of such experiments can be enabled by extending their nuclear recoil searches down to the lowest measurable energy. The response of the liquid xenon target medium to nuclear recoils, however, is not well characterized below a few keV, leading to large uncertainties in projected sensitivities. In this work, we report a new measurement of ionization signals from nuclear recoils in liquid xenon down to the lowest energy reported to date. At 0.3 keV, we find that the average recoil produces approximately one ionization electron; this is the first measurement of nuclear recoil signals at the single-ionization-electron level, approaching the physical limit of liquid xenon ionization detectors. We discuss the implications of these measurements on the physics reach of xenon detectors for nuclear-recoil-based WIMP dark matter searches and the detection of coherent elastic neutrino-nucleus scattering.

4.
Phys Rev Lett ; 122(13): 131301, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012624

RESUMO

The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a bremsstrahlung photon or a so-called "Migdal" electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.4-5 GeV/c^{2} using 1.4×10^{4} kg day of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously.

5.
Phys Rev Lett ; 118(25): 251302, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696768

RESUMO

We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=1.6×10^{-41} cm^{2} (σ_{p}=5×10^{-40} cm^{2}) at 35 GeV c^{-2}, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

6.
Phys Rev Lett ; 116(16): 161301, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152785

RESUMO

We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium ß source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.

7.
Phys Rev Lett ; 116(16): 161302, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152786

RESUMO

We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4} kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41} cm^{2} (σ_{p}=2.9×10^{-39} cm^{2}) at 33 GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA