Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 160: 213860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640876

RESUMO

Glioblastoma multiforme (GBM), a primary brain cancer, is one of the most aggressive forms of human cancer, with a very low patient survival rate. A characteristic feature of GBM is the diffuse infiltration of tumor cells into the surrounding brain extracellular matrix (ECM) that provide biophysical, topographical, and biochemical cues. In particular, ECM stiffness and composition is known to play a key role in controlling various GBM cell behaviors including proliferation, migration, invasion, as well as the stem-like state and response to chemotherapies. In this review, we discuss the mechanical characteristics of the GBM microenvironment at multiple length scales, and how biomaterial scaffolds such as polymeric hydrogels, and fibers, as well as microfluidic chip-based platforms have been employed as tissue mimetic models to study GBM mechanobiology. We also highlight how such tissue mimetic models can impact the field of GBM mechanobiology.


Assuntos
Neoplasias Encefálicas , Matriz Extracelular , Glioblastoma , Glioblastoma/patologia , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Matriz Extracelular/metabolismo , Hidrogéis/química , Microambiente Tumoral/fisiologia , Materiais Biocompatíveis , Animais , Fenômenos Biomecânicos , Biofísica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA