Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6691): 60-66, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574140

RESUMO

Recently, the emergence of all-organic perovskites with three-dimensional (3D) structures has expanded the potential applications of perovskite materials. However, the synthesis and utilization of all-organic perovskites in 2D form remain largely unexplored because the design principle has not been developed. We present the successful synthesis of a metal-free 2D layered perovskite, denoted as the Choi-Loh van der Waals phase (CL-v phase), with the chemical formula A2B2X4, where A represents a larger-sized cation compared to B and X denotes an anion. The CL-v phase exhibits a van der Waals gap enabled by interlayer hydrogen bonding and can be exfoliated or grown as molecularly thin 2D organic crystals. The dielectric constants of the CL-v phase range from 4.8 to 5.5 and we demonstrate their potential as gate dielectrics for thin-film transistors.

2.
Mol Biomed ; 5(1): 11, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556586

RESUMO

Gastric cancer (GC) is a common malignant tumor worldwide, especially in East Asia, with high incidence and mortality rate. Epigenetic modifications have been reported to participate in the progression of gastric cancer, among which m6A is the most abundant and important chemical modification in RNAs. Fat mass and obesity-associated protein (FTO) is the first identified RNA demethylase but little is known about its role in gastric cancer. In our study, data from TCGA and clinical samples showed that FTO was highly expressed in gastric cancer tissues. Kaplan-Meier plotter suggested that patients with the high level of FTO had a poor prognosis. In vitro and in vivo experiments confirmed the role of FTO in promoting gastric cancer cell proliferation. Mechanistically, we found that FTO bound to circFAM192A at the specific site and removed the m6A modification in circFAM192A, protecting it from degradation. CircFAM192A subsequently interacted with the leucine transporter solute carrier family 7 member 5 (SLC7A5) and enhancing its stability. As a result, an increased amount of SLC7A5 was on the membrane, which facilitated leucine uptake and activated the mTOR signaling pathway. Therefore, our study demonstrated that FTO promoted gastric cancer proliferation through the circFAM192A/SLC7A5 axis in the m6A-dependent manner. Our study shed new light on the role of FTO in gastric cancer progression.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proliferação de Células , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Humanos , Linhagem Celular Tumoral , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Masculino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Transdução de Sinais , Prognóstico , Feminino , Camundongos Nus , Transportador 1 de Aminoácidos Neutros Grandes
3.
J Am Chem Soc ; 145(25): 14044-14051, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315326

RESUMO

Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.

4.
Adv Mater ; 35(18): e2212079, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36815429

RESUMO

High-κ materials that exhibit large permittivity and band gaps are needed as gate dielectrics to enhance capacitance and prevent leakage current in downsized technology nodes. Among these, monoclinic ZrO2 (m-ZrO2 ) shows good potential because of its inertness and high-κ with respect to SiO2 , but a method to produce ultrathin single crystal is lacking. Here, the controllable preparation of ultrathin m-ZrO2 single crystals via the in situ thermal oxidation of ZrS2 is achieved. As-grown m-ZrO2 presents an equivalent oxide thickness of ≈0.29 nm, a high dielectric constant of ≈19, and a breakdown voltage (EBD ) of ≈7.22 MV cm-1 . MoS2 field effect transistor (FET) by using m-ZrO2 as a dielectric layer shows comparable mobility to that using SiO2 dielectric. The ultraclean interface of m-ZrO2 /MoS2 and high crystalline quality of m-ZrO2 lead to negligible hysteresis in transfer curves. Single crystal m-ZrO2 dielectric shows potential application in digital complementary metal oxidesemiconductor (CMOS) logic FET.

5.
Nat Commun ; 14(1): 411, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697404

RESUMO

Multilayers consisting of alternating soft and hard layers offer enhanced toughness compared to all-hard structures. However, shear instability usually exists in physically sputtered multilayers because of deformation incompatibility among hard and soft layers. Here, we demonstrate that 2D hybrid organic-inorganic perovskites (HOIP) provide an interesting platform to study the stress-strain behavior of hard and soft layers undulating with molecular scale periodicity. We investigate the phonon vibrations and photoluminescence properties of Ruddlesden-Popper perovskites (RPPs) under compression using a diamond anvil cell. The organic spacer due to C4 alkyl chain in RPP buffers compressive stress by tilting (n = 1 RPP) or step-wise rotational isomerism (n = 2 RPP) during compression, where n is the number of inorganic layers. By examining the pressure threshold of the elastic recovery regime across n = 1-4 RPPs, we obtained molecular insights into the relationship between structure and deformation resistance in hybrid organic-inorganic perovskites.

6.
Front Public Health ; 10: 907403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159255

RESUMO

Alongside sustainable development as a major global aim, the contribution made by globalization to environmental issues has become crucial in recent decades. Prior studies have focused on how trade in globalization influences the environment. However, multiple economic, social, and political factors are also important, the integration of which needs to be considered in sustainable development. Sharp and smooth breaks in time series models are the consequence of real-world structures. Using the bootstrap autoregressive-distributed lag test with a Fourier function, the present study reexamined the nexus between globalization and the environment in China, the United States, and India. The empirical results indicate that in the United States, the nexus between globalization and the environment is cointegrated in the long-term. In the short term, globalization is improving the environment in the United States and India. However, in China, globalization is resulting in environmental degradation. This research will assist policymakers in developing comprehensive strategies for sustainable development.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , China , Índia , Internacionalidade
7.
Sci Adv ; 8(17): eabj0395, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486735

RESUMO

Noninvasive imaging of the atomic arrangement in two-dimensional (2D) Ruddlesden-Popper hybrid perovskites (RPPs) is challenging because of the insulating nature and softness of the organic layers. Here, we demonstrate a sub-angstrom resolution imaging of both soft organic layers and inorganic framework in a prototypical 2D lead-halide RPP crystal via combined tip-functionalized scanning tunneling microscopy (STM) and noncontact atomic force microscopy (ncAFM) corroborated by theoretical simulations. STM measurements unveil the atomic reconstruction of the inorganic lead-halide lattice and overall twin-domain composition of the RPP crystal, while ncAFM measurements with a CO-tip enable nonperturbative visualization of the cooperative reordering of surface organic cations driven by their hydrogen bonding interactions with the inorganic lattice. Moreover, such a joint technique also allows for the atomic-scale imaging of the electrostatic potential variation across the twin-domain walls, revealing alternating quasi-1D electron and hole channels at neighboring twin boundaries, which may influence in-plane exciton transport and dissociation.

8.
Nat Commun ; 13(1): 138, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013412

RESUMO

Molecularly soft organic-inorganic hybrid perovskites are susceptible to dynamic instabilities of the lattice called octahedral tilt, which directly impacts their carrier transport and exciton-phonon coupling. Although the structural phase transitions associated with octahedral tilt has been extensively studied in 3D hybrid halide perovskites, its impact in hybrid 2D perovskites is not well understood. Here, we used scanning tunneling microscopy (STM) to directly visualize surface octahedral tilt in freshly exfoliated 2D Ruddlesden-Popper perovskites (RPPs) across the homologous series, whereby the steric hindrance imposed by long organic cations is unlocked by exfoliation. The experimentally determined octahedral tilts from n = 1 to n = 4 RPPs from STM images are found to agree very well with out-of-plane surface octahedral tilts predicted by density functional theory calculations. The surface-enhanced octahedral tilt is correlated to excitonic redshift observed in photoluminescence (PL), and it enhances inversion asymmetry normal to the direction of quantum well and promotes Rashba spin splitting for n > 1.

9.
Mol Cell Endocrinol ; 533: 111323, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000351

RESUMO

BACKGROUND: Obesity is characterized by the excess accumulation of white adipose tissue (WAT). Src family kinases (SFKs) are non-receptor tyrosine kinases consisting of eight members (SRC, FYN, YES1, HCK, LCK, LYN, FGR and BLK) that have been studied extensively in mammalian cells. Although individual members in murine cells provide some clues that are associated with the regulation of adipogenesis, the specific role of this family in adipocyte differentiation has rarely been assessed, especially in human adipocytes. METHODS: Herein, we first explored the expression profiles of SFKs during human preadipocyte differentiation. Then, we used the pyrazolo-pyrimidinyl-amine compound PP1, a potent SFK inhibitor, to evaluate the function of SFKs during adipocyte differentiation. Furthermore, we adopted a loss-of-function strategy with siRNAs to determine the role of FGR in adipocyte differentiation. RESULTS: Here, we found that SRC, FYN, YES1, LYN and FGR were expressed in human preadipocytes and induced after the initiation of differentiation. Furthermore, the SFK inhibitor PP1 suppressed adipocyte differentiation. We also found that PP1 significantly suppressed the SFK activity in preadipocytes and decreased the expression of adipogenic genes in early and late differentiation. Given that FGR exhibited the most expression enhancement in mature adipocytes, we focused on FGR and found that its knockdown reduced lipid accumulation and adipogenic gene expression. CONCLUSIONS: Collectively, these findings suggest that SFKs, especially FGR, are involved in the differentiation of human preadipocytes. Our results lay a foundation for further understanding the role of SFKs in adipocyte differentiation and provide new clues for anti-obesity therapies.


Assuntos
Adipócitos/citologia , Adipogenia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinases da Família src/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea Abdominal/citologia , Gordura Subcutânea Abdominal/metabolismo
10.
J Phys Chem Lett ; 12(16): 4003-4011, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33877840

RESUMO

Halide perovskites are versatile semiconductors with applications including photovoltaics and light-emitting devices, having modular optoelectronic properties realizable through composition and dimensionality tuning. Layered Ruddlesden-Popper perovskites are particularly interesting due to their unique 2D character and charge carrier dynamics. However, long-range energy transport through exciton diffusion in these materials is not understood or realized. Here, local time-resolved luminescence mapping techniques are employed to visualize exciton transport in exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. Two distinct transport regimes are uncovered, depending on the temperature range. Above 100 K, diffusion is mediated by thermally activated hopping processes between localized states. At lower temperatures, a nonuniform energy landscape emerges in which transport is dominated by downhill energy transfer to lower-energy states, leading to long-range transport over hundreds of nanometers. Efficient, long-range, and switchable downhill transfer offers exciting possibilities for controlled directional long-range transport in these 2D materials for new applications.

11.
Nanotechnology ; 32(28)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33827071

RESUMO

Here we report on the structural, dielectric, magnetic and optical properties of double perovskite Sm2NiMnO6(SNMO) nanoparticles synthesized by a sol-gel method. Structural Reitveld refinements on x-ray powder diffraction data revealed that the SNMO nanoparticles crystallized in a monoclinic crystal structure withP21/nspace group. SEM and (HR)TEM images revealed the phase purity and single-crystalline nature of the SNMO nanoparticles. XPS spectra confirmed the presence of Sm3+, Ni2+and Mn4+ions in the SNMO nanoparticles and oxygen in the forms of lattice oxygen and the hydroxyls species. SNMO ceramics exhibited relaxor-type dielectric behavior, well fitted by modified Curie-Weiss law. Such dielectric behavior originated from the interactions of random dipoles arisen from the B-site cations disorder accompanied with the variations in local electric fields and local strain fields due to the different radii of B-site cations, and/or the virtual electrons hopping between the Ni2+and Mn4+cations. Magnetic data demonstrate the variations of the magnetic transitions at low temperatures and the spin glass-like behavior below 11 K, which is attributed to the spin fluctuations induced by the competing interactions between the ferromagnetic (FM) and antiferromagnetic phases. Large positive Curie-Weiss temperature (θp) indicates the dominant FM super-exchange interactions in the SNMO samples. The SNMO nanoparticles have a direct optical band gap of 1.42 eV, close to 1.34 eV in a single junction solar cell. That enables the SNMO nanoparticles to be useful for solar cell absorbers.

12.
Nat Chem ; 12(12): 1115-1122, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33139932

RESUMO

Mono- or few-layer sheets of covalent organic frameworks (COFs) represent an attractive platform of two-dimensional materials that hold promise for tailor-made functionality and pores, through judicious design of the COF building blocks. But although a wide variety of layered COFs have been synthesized, cleaving their interlayer stacking to obtain COF sheets of uniform thickness has remained challenging. Here, we have partitioned the interlayer space in COFs by incorporating pseudorotaxane units into their backbones. Macrocyclic hosts based on crown ethers were embedded into either a ditopic or a tetratopic acylhydrazide building block. Reaction with a tritopic aldehyde linker led to the formation of acylhydrazone-based layered COFs in which one basal plane is composed of either one layer, in the case of the ditopic macrocyclic component, or two adjacent layers covalently held together by its tetratopic counterpart. When a viologen threading unit is introduced, the formation of a host-guest complex facilitates the self-exfoliation of the COFs into crystalline monolayers or bilayers, respectively.

13.
Nat Commun ; 11(1): 5483, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127900

RESUMO

Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm2V-1s-1 between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.

14.
Nano Lett ; 20(7): 5330-5338, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32501013

RESUMO

Single-phonon modes offer potential applications in quantum phonon optics, but the phonon density of states of most materials consist of mixed contributions from coupled phonons. Here, using theoretical calculations and magneto-Raman measurements, we report two single-phonon vibration modes originating from the breathing and opposite out-of-plane vibrations of InSe layers. These single-phonon vibrations exhibit an anticorrelated scattering rotations of the polarization axis under an applied vertical magnetic field; such an anomalous magneto-optical behavior is due to the reverse bond polarizations of two quantum atomic vibrations, which induce different symmetry for the corresponding Raman selection rules. A 180° (+90° and -90°) integrated scattering rotation angle of two single-phonon modes was achieved when the magnetic field was swept from 0 to 6 T. This work demonstrates new ways to manipulate the magneto-optic effect through phonon polarity-based symmetry control and opens avenues for exploring single-phonon-vibration-based nanomechanical oscillators and magneto-phonon-coupled physics.

15.
Angew Chem Int Ed Engl ; 59(28): 11527-11532, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246788

RESUMO

The marriage of dynamic covalent chemistry (DCC) and coordination chemistry is a powerful tool for assembling complex architectures from simple building units. Recently, the synthesis of woven covalent organic frameworks (COFs) with topologically fascinating structures has been achieved using this approach. However, the scope is highly limited and there is a need to discover new pathways that can assemble covalently linked organic threads into crystalline frameworks. Herein, we have identified branching pathways leading to the assembly of three-dimensional (3D) woven COFs or one-dimensional (1D) metallo-COFs (mCOFs), where the mechanism is underpinned by the absence or presence of ligand exchange.

16.
Nat Commun ; 11(1): 1633, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242012

RESUMO

The synthesis of a polymer that combines the processability of plastics with the extreme rigidity of cross-linked organic networks is highly attractive for molecular sieving applications. However, cross-linked networks are typically insoluble or infusible, preventing them from being processed as plastics. Here, we report a solution-processable conjugated microporous thermoset with permanent pores of ~0.4 nm, prepared by a simple heating process. When employed as a two-dimensional molecular sieving membrane for hydrogen separation, the membrane exhibits ultrahigh permeability with good selectivity for H2 over CO2, O2, N2, CH4, C3H6 and C3H8. The combined processability, structural rigidity and easy feasibility make this polymeric membrane promising for large-scale hydrogen separations of commercial and environmental relevance.

17.
Nat Commun ; 11(1): 1434, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188847

RESUMO

Although polymers have been studied for well over a century, there are few examples of covalently linked polymer crystals synthesised directly from solution. One-dimensional (1D) covalent polymers that are packed into a framework structure can be viewed as a 1D covalent organic framework (COF), but making a single crystal of this has been elusive. Herein, by combining labile metal coordination and dynamic covalent chemistry, we discover a strategy to synthesise single-crystal metallo-COFs under solvothermal conditions. The single-crystal structure is rigorously solved using single-crystal electron diffraction technique. The non-centrosymmetric metallo-COF allows second harmonic generation. Due to the presence of syntactic pendant amine groups along the polymer chains, the metallopolymer crystal can be further cross-linked into a crystalline woven network.

18.
ACS Nano ; 14(4): 3917-3926, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049489

RESUMO

The breaking of multiple symmetries by periodic lattice distortion at a commensurate charge density wave (CDW) state is expected to give rise to intriguing interesting properties. However, accessing the commensurate CDW state on bulk TaS2 crystals typically requires cryogenic temperatures (77 K), which precludes practical applications. Here, we found that heteroepitaxial growth of a 2H-tantalum disulfide bilayer on a hexagonal-boron nitride (h-BN) substrate produces a robust commensurate CDW order at room temperature, characterized by a Moiré superlattice of 3 × 3 TaS2 on a 4 × 4 h-BN unit cell. The CDW order is confirmed by scanning transmission electron microscopy and Raman measurements. Theoretical calculations reveal that the stabilizing energy for the CDW phase of the monolayer and bilayer 2H-TaS2-on-h-BN substrates arises primarily from interfacial electrostatic interactions and, to a lesser extent, interfacial strain. Our work shows that engineering interfacial electrostatic interactions in an ultrathin van der Waals heterostructure constitutes an effective way to enhance CDW order in two-dimensional materials.

19.
Nanoscale Res Lett ; 15(1): 9, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31933031

RESUMO

Perovskite manganites exhibit a broad range of structural, electronic, and magnetic properties, which are widely investigated since the discovery of the colossal magnetoresistance effect in 1994. As compared to the parent perovskite manganite oxides, rare earth-doped perovskite manganite oxides with a chemical composition of LnxA1-xMnO3 (where Ln represents rare earth metal elements such as La, Pr, Nd, A is divalent alkaline earth metal elements such as Ca, Sr, Ba) exhibit much diverse electrical properties due to that the rare earth doping leads to a change of valence states of manganese which plays a core role in the transport properties. There is not only the technological importance but also the need to understand the fundamental mechanisms behind the unusual magnetic and transport properties that attract enormous attention. Nowadays, with the rapid development of electronic devices toward integration and miniaturization, the feature sizes of the microelectronic devices based on rare earth-doped perovskite manganite are down-scaled into nanoscale dimensions. At nanoscale, various finite size effects in rare earth-doped perovskite manganite oxide nanostructures will lead to more interesting novel properties of this system. In recent years, much progress has been achieved on the rare earth-doped perovskite manganite oxide nanostructures after considerable experimental and theoretical efforts. This paper gives an overview of the state of art in the studies on the fabrication, structural characterization, physical properties, and functional applications of rare earth-doped perovskite manganite oxide nanostructures. Our review first starts with the short introduction of the research histories and the remarkable discoveries in the rare earth-doped perovskite manganites. In the second part, different methods for fabricating rare earth-doped perovskite manganite oxide nanostructures are summarized. Next, structural characterization and multifunctional properties of the rare earth-doped perovskite manganite oxide nanostructures are in-depth reviewed. In the following, potential applications of rare earth-doped perovskite manganite oxide nanostructures in the fields of magnetic memory devices and magnetic sensors, spintronic devices, solid oxide fuel cells, magnetic refrigeration, biomedicine, and catalysts are highlighted. Finally, this review concludes with some perspectives and challenges for the future researches of rare earth-doped perovskite manganite oxide nanostructures.

20.
Adv Mater ; 32(4): e1906437, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31777990

RESUMO

The identification of chemoselective oxidation process en route to fine chemicals and specialty chemicals is a long-standing pursuit in chemical synthesis. A vertically structured, cobalt single atom-intercalated molybdenum disulfide catalyst (Co1 -in-MoS2 ) is developed for the chemoselective transformation of sulfides to sulfone derivatives. The single-atom encapsulation alters the electron structure of catalyst owing to confinement effect and strong metal-substrate interaction, thus enhancing adsorption of sulfides and chemoselective oxidation at the edge sites of MoS2 to achieve excellent yields of up to 99% for 34 examples. The synthetic scopes can be extended to sulfide-bearing alkenes, alkynes, aldehydes, ketones, boronic esters, and amines derivatives as a toolbox for the synthesis of high-value, multifunctional sulfones and late-stage functionalization of pharmaceuticals, e.g., Tamiflu. The synthetic utility of cobalt single atom-intercalated MoS2 , together with its reusability, scalability, and simplified purification process, renders it promising for industrial productions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA