Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1308: 342611, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740450

RESUMO

BACKGROUND: Acute kidney injury (AKI) poses a severe risk to public health, mostly manifested by damage and death of renal tubular epithelial cells. However, routine blood examination, a conventional approach for clinical detection of AKI, is not available for identifying early-stage AKI. Plenty of reported methods were lack of early biomarkers and real time evaluation tools, which resulted in a vital challenge for early diagnosis of AKI. Therefore, developing novel probes for early detection and assessment of AKI is exceedingly crucial. RESULTS: Based on ESIPT mechanism, a new fluorescent probe (MEO-NO) with 2-(2'-hydroxyphenyl) benzothiazole (HBT) derivatives as fluorophore has been synthesized for dynamic imaging peroxynitrite (ONOO-) levels in ferroptosis-mediated AKI. Upon the addition of ONOO-, MEO-NO exhibited obvious fluorescence changes, a significant Stokes shift (130 nm) and rapid response (approximately 45 s), and featured exceptional sensitivity (LOD = 7.28 nM) as well as high selectivity from the competitive species at physiological pH. In addition, MEO-NO was conducive to the biological depth imaging ONOO- in cells, zebrafish, and mice. Importantly, MEO-NO could monitor ONOO- levels during sorafenib-induced ferroptosis and CP-induced AKI. With the assistance of MEO-NO, we successfully visualized and tracked ONOO- variations for early detection and assessment of ferroptosis-mediated AKI in cells, zebrafish and mice models. SIGNIFICANCE AND NOVELTY: Benefiting from the superior performance of MEO-NO, experimental results further demonstrated that the levels of ONOO- was overexpressed during ferroptosis-mediated AKI in cells, zebrafish, and mice models. The developed novel probe MEO-NO provided a strong visualization tool for imagining ONOO-, which might be a potential method for the prevention, diagnosis, and treatment of ferroptosis-mediated AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Corantes Fluorescentes , Ácido Peroxinitroso , Peixe-Zebra , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ácido Peroxinitroso/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Camundongos , Humanos , Imagem Óptica , Estrutura Molecular , Diagnóstico Precoce
2.
Mol Carcinog ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656551

RESUMO

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.

3.
Biol Direct ; 19(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163864

RESUMO

BACKGROUND: Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS: Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS: We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS: PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proliferação de Células/genética , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular/genética , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo
4.
Cell Biol Toxicol ; 39(6): 3159-3174, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597090

RESUMO

Radioresistance is the primary reason for radiotherapy failure in non-small cell lung cancer (NSCLC) patients. Glycosylation-related alterations are critically involved in tumor radioresistance. However, the relationship between glycosylation and NSCLC radioresistance is unclear. Here, we generated radioresistant NSCLC cell models by using fractionated irradiation. The aberrant glycosylation involved in NSCLC-related radioresistance was elucidated by transcriptomic, proteomic, and glycomic analyses. We conducted in vitro and in vivo investigations for determining the biological functions of glycosylation. Additionally, its downstream pathways and upstream regulators were inferred and verified. We demonstrated that mucin-type O-glycosylation and the O-glycosylating enzyme GALNT2 were highly expressed in radioresistant NSCLC cells. GALNT2 was found to be elevated in NSCLC tissues; this elevated level showed a remarkable association with response to radiotherapy treatment as well as overall survival. Functional experiments showed that GALNT2 knockdown improved NSCLC radiosensitivity via inducing apoptosis. By using a lectin pull-down system, we revealed that mucin-type O-glycans on IGF1R were modified by GALNT2 and that IGF1R could affect the expression of apoptosis-related genes. Moreover, GALNT2 knockdown-mediated in vitro radiosensitization was enhanced by IGF1R inhibition. According to a miRNA array analysis and a luciferase reporter assay, miR-30a-5p negatively modulated GALNT2. In summary, our findings established GALNT2 as a key contributor to the radioresistance of NSCLC. Therefore, targeting GALNT2 may be a promising therapeutic strategy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Multiômica , Proteômica , MicroRNAs/genética , MicroRNAs/metabolismo , Mucinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
5.
Discov Oncol ; 14(1): 157, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639158

RESUMO

BACKGROUND: The incidence of ovarian cancer ranks third among gynecologic malignancies, but the mortality rate ranks first. METHODS: The expression of GAS5 is low in ovarian cancer and is associated with the low survival of ovarian cancer patients according to public ovarian cancer databases. GAS5 overexpression inhibited ovarian malignancy by affecting the proliferation and migratory abilities in OVCAR3 and A2780 cells. GAS5 overexpression increased the rate of cell apoptosis, and the cells were blocked in the G1 phase as assessed by flow cytometry. RESULTS: We found that hnRNPK was a potential target gene, which was regulated negatively by GAS5 based on RNA-pulldown and mass spectrometry analysis. Mechanistically, GAS5 affected the inhibition of the PI3K/AKT/mTOR pathways and bound the protein of hnRNPK, which influenced hnRNPK stability. Furthermore, rescue assays demonstrated hnRNPK was significantly involved in the progression of ovarian cancer. CONCLUSIONS: Our study showed one of the mechanisms that GAS5 inhibited ovarian cancer metastasis by down-regulating hnRNPK expression, and GAS5 can be used to predict the prognosis of ovarian cancer patients.

6.
Cell Mol Biol Lett ; 27(1): 71, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058918

RESUMO

BACKGROUND: N-Acetylgalactosaminyltransferases (GALNTs), the enzymes that initiate mucin-type O-glycosylation, are closely associated with tumor occurrence and progression. However, a comprehensive analysis of GALNTs in non-small cell lung cancer (NSCLC) is lacking. METHODS: The expression profiles and prognostic values of the GALNT family members in NSCLC were analyzed using publicly available databases. Gain- and loss-of-function experiments were applied to assess the biological function of GALNT2 in NSCLC. High-throughput sequencing and bioinformatics approaches were employed to uncover the regulatory mechanism of GALNT2. RESULTS: Among the family members of GALNTs, only GALNT2 was frequently overexpressed in NSCLC tissues and was positively correlated with poor prognosis. In vitro assays showed that GALNT2 knockdown repressed NSCLC cell proliferation, migration, and invasion, but induced apoptosis and cell cycle arrest. Correspondently, GALNT2 overexpression exerted the opposite effects. In vivo experiments demonstrated that knockdown of GALNT2 restrained tumor formation in nude mice. Mechanistic investigations revealed that GALNT2 modified the O-glycosylation of ITGA5 and affected the activation of the PI3K/Akt and MAPK/ERK pathways. Further studies showed that miR-30d was a negative regulator of GALNT2. CONCLUSIONS: These findings suggest that GALNT2 is an oncogene in NSCLC and has the potential as a target for NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
7.
Cell Mol Biol Lett ; 27(1): 8, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073841

RESUMO

BACKGROUND: Glycosyltransferases play a crucial role in various cancers. ß1, 3-N-acetylglucosaminyltransferase 2, a polylactosamine synthase, is an important member of the glycosyltransferase family. However, the biological function and regulatory mechanism of ß3GNT2 in esophageal carcinoma (ESCA) is still poorly understood. METHODS: The Cancer Genome Atlas and Genotype-Tissue Expression databases were used for gene expression and prognosis analysis. Quantitative real-time PCR, Western blot, and immunohistochemistry were performed to detect the expression of ß3GNT2 in ESCA cell lines and tissues. In vitro assays and xenograft tumor models were utilized to evaluate the impact of ß3GNT2 on ESCA progression. The downstream effectors and upstream regulators of ß3GNT2 were predicted by online software and verified by functional experiments. RESULTS: We found that ß3GNT2 was highly expressed in ESCA tissues and positively correlated with poor prognosis in ESCA patients. ß3GNT2 expression was closely associated with the tumor size, TNM stage, and overall survival of ESCA patients. Functionally, ß3GNT2 promoted ESCA cell growth, migration, and invasion in vitro, as well as tumorigenesis in vivo. Mechanistically, ß3GNT2 knockdown decreased the expression of the polylactosamine on EGFR. Knockdown of ß3GNT2 also inhibited the JAK/STAT signaling pathway. Meanwhile, the JAK/STAT inhibitor could partly reverse the biological effects caused by ß3GNT2 overexpression. Moreover, ß3GNT2 expression was positively regulated by CREB1 and negatively regulated by miR-133b. Both CREB1 and miR-133b was involved in the ß3GNT2-mediated ESCA progression. CONCLUSIONS: Our study, for the first time, reveals the importance of ß3GNT2 in ESCA progression and offers a potential therapeutic target for ESCA.


Assuntos
Carcinoma , Neoplasias Esofágicas , MicroRNAs , N-Acetilglucosaminiltransferases/genética , Carcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA