Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ophthalmol Sci ; 4(2): 100416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170125

RESUMO

Purpose: To investigate the histology of Bruch's membrane (BM) calcification in pseudoxanthoma elasticum (PXE) and correlate this to clinical retinal imaging. Design: Experimental study with clinicopathological correlation. Subjects and Controls: Six postmortem eyes from 4 PXE patients and 1 comparison eye from an anonymous donor without PXE. One of the eyes had a multimodal clinical image set for comparison. Methods: Calcification was labeled with OsteSense 680RD, a fluorescent dye specific for hydroxyapatite, and visualized with confocal microscopy. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMs) were used to analyze the elemental and ionic composition of different anatomical locations. Findings on cadaver tissues were compared with clinical imaging of 1 PXE patient. Main Outcome Measures: The characteristics and topographical distribution of hydroxyapatite in BM in eyes with PXE were compared with the clinical manifestations of the disease. Results: Analyses of whole-mount and sectioned PXE eyes revealed an extensive, confluent OsteoSense labeling in the central and midperipheral BM, transitioning to a speckled labeling in the midperiphery. These areas corresponded to hyperreflective and isoreflective zones on clinical imaging. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy and TOF-SIMs analyses identified these calcifications as hydroxyapatite in BM of PXE eyes. The confluent fluorescent appearance originates from heavily calcified fibrous structures of both the collagen and the elastic layers of BM. Calcification was also detected in an aged comparison eye, but this was markedly different from PXE eyes and presented as small snowflake-like deposits in the posterior pole. Conclusions: Pseudoxanthoma elasticum eyes show extensive hydroxyapatite deposition in the inner and outer collagenous and elastic BM layers in the macula with a gradual change toward the midperiphery, which seems to correlate with the clinical phenotype. The snowflake-like calcification in BM of an aged comparison eye differed markedly from the extensive calcification in PXE. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Alzheimers Dement ; 20(1): 728-740, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917365

RESUMO

There is emerging evidence that amyloid beta protein (Aß) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aß and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Retina/diagnóstico por imagem , Biomarcadores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/patologia
3.
Alzheimers Dement ; 19(12): 5860-5871, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654029

RESUMO

With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.


Assuntos
Doença de Alzheimer , Pesquisa Biomédica , Humanos , Inteligência Artificial , Doença de Alzheimer/diagnóstico , Aprendizado de Máquina
4.
Sensors (Basel) ; 23(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514920

RESUMO

Deposition of calcium-containing minerals such as hydroxyapatite and whitlockite in the subretinal pigment epithelial (sub-RPE) space of the retina is linked to the development of and progression to the end-stage of age-related macular degeneration (AMD). AMD is the most common eye disease causing blindness amongst the elderly in developed countries; early diagnosis is desirable, particularly to begin treatment where available. Calcification in the sub-RPE space is also directly linked to other diseases such as Pseudoxanthoma elasticum (PXE). We found that these mineral deposits could be imaged by fluorescence using tetracycline antibiotics as specific stains. Binding of tetracyclines to the minerals was accompanied by increases in fluorescence intensity and fluorescence lifetime. The lifetimes for tetracyclines differed substantially from the known background lifetime of the existing natural retinal fluorophores, suggesting that calcification could be visualized by lifetime imaging. However, the excitation wavelengths used to excite these lifetime changes were generally shorter than those approved for retinal imaging. Here, we show that tetracycline-stained drusen in post mortem human retinas may be imaged by fluorescence lifetime contrast using multiphoton (infrared) excitation. For this pilot study, ten eyes from six anonymous deceased donors (3 female, 3 male, mean age 83.7 years, range 79-97 years) were obtained with informed consent from the Maryland State Anatomy Board with ethical oversight and approval by the Institutional Review Board.


Assuntos
Degeneração Macular , Tetraciclina , Masculino , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Tetraciclina/metabolismo , Projetos Piloto , Retina , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/metabolismo , Antibacterianos/metabolismo
6.
Front Nutr ; 10: 1124987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139441

RESUMO

The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·µg-1 at 10 days to 0.062 ± 0.043 ng·µg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.

7.
Ophthalmol Sci ; 3(3): 100308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37214765

RESUMO

Purpose: Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system. Recent evidence suggests that degeneration of the inner layers of the retina occurs in MS. This study aimed to examine whether there are outer retinal changes in patients living with MS. Design: This was a single center, cross-sectional study. Participants: Sixteen patients with MS and 25 controls (volunteers without diagnosed MS) were recruited for the study. Methods: We acquired volumetric spectral domain-OCT scans of the macula and a circular scan around the optic nerve head (ONH). We also captured adaptive optics (AO) images at 0° (centered on the foveola), 2°, 4°, and 6° temporal to the fovea. Main Outcome Measures: We calculated the thickness of the different retinal layers in the macula and around the ONH using the inbuilt software of the OCT. We evaluated changes in cone photoreceptors by calculating cone density and spacing by the inbuilt AO automatic segmentation algorithm with manual correction. We compared patients with and without optic neuritis and controls. Results: We found significant thinning of the inner retina and a thickening of the outer retina in the eye with a history of optic neuritis (eyes of patients with MS with a history of optic neuritis; mean difference [MD]: -11.13 ± 3.61 µm, P = 0.002 and MD: 2.86 ± 0.89 µm, P = 0.001; respectively). We did not observe changes in retinal layers without optic neuritis in eyes of patients with MS without a history of optic neuritis. However, regional differences were detected in the peripapillary retinal nerve fiber layer. Analyzing AO images revealed a significantly lower cone outer-segment density at all eccentricities in all patients compared with control eyes (P < 0.05), independent of optic neuritis history. Conclusions: Our results showed that all MS cases were associated with decreased cone densities. Future longitudinal studies will help to elucidate whether this is a specific and sensitive method to detect and monitor the development and progression of MS. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

8.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047392

RESUMO

We have shown that all sub-retinal pigment epithelial (sub-RPE) deposits examined contain calcium phosphate minerals: hydroxyapatite (HAP), whitlockite (Wht), or both. These typically take the form of ca. 1 µm diameter spherules or >10 µm nodules and appear to be involved in the development and progression of age-related macular degeneration (AMD). Thus, these minerals may serve as useful biomarkers the for early detection and monitoring of sub-RPE changes in AMD. We demonstrated that HAP deposits could be imaged in vitro by fluorescence lifetime imaging microscopy (FLIM) in flat-mounted retinas using legacy tetracycline antibiotics as selective sensors for HAP. As the contrast on a FLIM image is based on the difference in fluorescence lifetime and not intensity of the tetracycline-stained HAP, distinguishing tissue autofluorescence from the background is significantly improved. The focus of the present pilot study was to assess whether vascular perfusion of the well tolerated and characterized chlortetracycline (widely used as an orally bioavailable antibiotic) can fluorescently label retinal HAP using human cadavers. We found that the tetracycline delivered through the peripheral circulation can indeed selectively label sub-RPE deposits opening the possibility for its use for ophthalmic monitoring of a range of diseases in which deposit formation is reported, such as AMD and Alzheimer disease (AD).


Assuntos
Calcinose , Clortetraciclina , Degeneração Macular , Humanos , Projetos Piloto , Retina , Epitélio Pigmentado da Retina
9.
Proteomics Clin Appl ; 17(3): e2200106, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36891577

RESUMO

PURPOSE: Robust, affordable plasma proteomic biomarker workflows are needed for large-scale clinical studies. We evaluated aspects of sample preparation to allow liquid chromatography-mass spectrometry (LC-MS) analysis of more than 1500 samples from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) trial of adults with type 2 diabetes. METHODS: Using LC-MS with data-independent acquisition we evaluated four variables: plasma protein depletion, EDTA or citrated anti-coagulant blood collection tubes, plasma lipid depletion strategies and plasma freeze-thaw cycles. Optimised methods were applied in a pilot study of FIELD participants. RESULTS: LC-MS of undepleted plasma conducted over a 45 min gradient yielded 172 proteins after excluding immunoglobulin isoforms. Cibachrome-blue-based depletion yielded additional proteins but with cost and time expenses, while immunodepleting albumin and IgG provided few additional identifications. Only minor variations were associated with blood collection tube type, delipidation methods and freeze-thaw cycles. From 65 batches involving over 1500 injections, the median intra-batch quantitative differences in the top 100 proteins of the plasma external standard were less than 2%. Fenofibrate altered seven plasma proteins. CONCLUSIONS AND CLINICAL RELEVANCE: A robust plasma handling and LC-MS proteomics workflow for abundant plasma proteins has been developed for large-scale biomarker studies that balance proteomic depth with time and resource costs.


Assuntos
Diabetes Mellitus Tipo 2 , Fenofibrato , Adulto , Humanos , Cromatografia Líquida/métodos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Proteômica/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Projetos Piloto , Espectrometria de Massas em Tandem , Proteínas Sanguíneas/metabolismo , Biomarcadores
10.
Cells ; 12(5)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36899910

RESUMO

Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Zinco/metabolismo , Degeneração Macular/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência de RNA
11.
Transl Vis Sci Technol ; 12(1): 13, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622689

RESUMO

Purpose: Retinal microvascular abnormalities measured on retinal images are a potential source of prognostic biomarkers of vascular changes in the neurodegenerating brain. We assessed the presence of these abnormalities in Alzheimer's dementia and mild cognitive impairment (MCI) using ultra-widefield (UWF) retinal imaging. Methods: UWF images from 103 participants (28 with Alzheimer's dementia, 30 with MCI, and 45 with normal cognition) underwent analysis to quantify measures of retinal vascular branching complexity, width, and tortuosity. Results: Participants with Alzheimer's dementia displayed increased vessel branching in the midperipheral retina and increased arteriolar thinning. Participants with MCI displayed increased rates of arteriolar and venular thinning and a trend for decreased vessel branching. Conclusions: Statistically significant differences in the retinal vasculature in peripheral regions of the retina were observed among the distinct cognitive stages. However, larger studies are required to establish the clinical importance of our findings. UWF imaging may be a promising modality to assess a larger view of the retinal vasculature to uncover retinal changes in Alzheimer's disease. Translational Relevance: This pilot work reports an investigation into which retinal vasculature measurements may be useful surrogate measures of cognitive decline, as well as technical developments (e.g., measurement standardization), that are first required to establish their recommended use and translational potential.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Projetos Piloto , Disfunção Cognitiva/diagnóstico por imagem , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem
12.
JAMA Ophthalmol ; 141(1): 84-91, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394831

RESUMO

Importance: Several ocular biomarkers have been proposed for the early detection of Alzheimer disease (AD) and mild cognitive impairment (MCI), particularly fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA). Objective: To perform an umbrella review of systematic reviews to assess the diagnostic accuracy of ocular biomarkers for early diagnosis of Alzheimer disease. Data Sources: MEDLINE, Embase, and PsycINFO were searched from January 2000 to November 2021. The references of included reviews were also searched. Study Selection: Systematic reviews investigating the diagnostic accuracy of ocular biomarkers to detect AD and MCI, in secondary care or memory clinics, against established clinical criteria or clinical judgment. Data Extraction and Synthesis: The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline checklist was followed and the Risk Of Bias in Systematic reviews tool was used to assess review quality. Main Outcomes and Measures: The prespecified outcome was the accuracy of ocular biomarkers for diagnosing AD and MCI. The area under the curve (AUC) was derived from standardized mean difference. Results: From the 591 titles, 14 systematic reviews were included (median [range] number of studies in each review, 14 [5-126]). Only 4 reviews were at low risk of bias on all Risk of Bias in Systematic Reviews domains. The imaging-derived parameters with the most evidence for detecting AD compared with healthy controls were OCT peripapillary retinal nerve fiber layer thickness (38 studies including 1883 patients with AD and 2510 controls; AUC = 0.70; 95% CI, 0.53-0.79); OCTA foveal avascular zone (5 studies including 177 patients with AD and 371 controls; AUC = 0.73; 95% CI, 0.50-0.89); and saccadic eye movements prosaccade latency (30 studies including 651 patients with AD/MCI and 771 controls; AUC = 0.64; 95% CI, 0.58-0.69). Antisaccade error was investigated in fewer studies (12 studies including 424 patients with AD/MCI and 382 controls) and yielded the best accuracy (AUC = 0.79; 95% CI, 0.70-0.88). Conclusions and Relevance: This umbrella review has highlighted limitations in design and reporting of the existing research on ocular biomarkers for diagnosing AD. Parameters with the best evidence showed poor to moderate diagnostic accuracy in cross-sectional studies. Future longitudinal studies should investigate whether changes in OCT and OCTA measurements over time can yield accurate predictions of AD onset.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/complicações , Retina , Biomarcadores
14.
Acta Biomater ; 143: 138-144, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259518

RESUMO

Brain calcification (calcium phosphate mineral formation) has been reported in the past 100 years in the brains of Alzheimer's disease (AD) patients. However, the association between calcification and AD, the triggers for calcification, and its role within the disease are not clear. On the other hand, hyperphosphorylated Tau protein (pTau) tangles have been widely studied and recognized as an essential factor in developing AD. In this work, calcification in the brains of AD patients is characterized by advanced electron microscopy and fluorescence microscopy. Results are then compared to samples from cognitively healthy, age-matched donors, and the colocalization of calcification and pTau is investigated. Here, we show that AD patients' brains present microcalcification associated with the neural cell nuclei and cell projections, and that these are strongly related to the presence of pTau. The link between microcalcification and pTau suggests a potential mechanism of brain cell damage. Together with the formation of amyloid plaques and neurofibrillary tangles, microcalcification in neuronal cells adds to a better understanding of the pathology of AD. Finally, the presence of microcalcification in the neuronal cells of AD patients may assist in AD diagnosis, and may open avenues for developing intervention strategies based on inhibition of calcification. STATEMENT OF SIGNIFICANCE: Brain calcification has been reported in the past 100 years in the brains of Alzheimer's disease (AD) patients. However, the association between calcification and AD is not clear. Hyperphosphorylated Tau protein (pTau) has been studied and recognized as a key factor in developing AD. We show here that AD patients' brains present microcalcification associated with the neuronal cell nuclei and cell projections, and that these are related to the presence of pTau. The study of calcification in brain cells can contribute to a better understanding of the biochemical mechanisms associated with AD and might also reveal that calcification is part of the full disease mechanism. Moreover, this work opens the possibility for using calcification as a biomarker to identify AD.


Assuntos
Doença de Alzheimer , Calcinose , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Calcinose/metabolismo , Núcleo Celular/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Proteínas tau/metabolismo
15.
Mol Syst Des Eng ; 7(11): 1415-1421, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37927331

RESUMO

Herein, we report the crystal structure of 2,7-dichlorofluorescein methyl ester (DCF-ME) and its fluorescence response to hydroxyapatite binding. The reported fluorophore is very selective for staining the bone matrix and provides turn-on fluorescence upon hydroxyapatite binding. The reported fluorophore can readily pass the cell membrane of the C2C12 cell line, and it is non-toxic for the cell line. The reported fluorophore DCF-ME may find applications in monitoring bone remodeling and microcalcification as an early diagnosis tool for breast cancer and age-related macular degeneration.

16.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769404

RESUMO

Age-related macular degeneration (AMD) is a common blinding disease in the western world that is linked to the loss of fenestration in the choriocapillaris that sustains the retinal pigment epithelium and photoreceptors in the back of the eye. Changes in ocular and systemic zinc concentrations have been associated with AMD; therefore, we hypothesized that these changes might be directly involved in fenestrae formation. To test this hypothesis, an endothelial cell (bEND.5) model for fenestrae formation was treated with different concentrations of zinc sulfate (ZnSO4) solution for up to 20 h. Fenestrae were visualized by staining for Plasmalemmal Vesicle Associated Protein-1 (PV-1), the protein that forms the diaphragms of the fenestrated endothelium. Size and distribution were monitored by transmission electron microscopy (TEM). We found that zinc induced the redistribution of PV-1 into areas called sieve plates containing ~70-nm uniform size and typical morphology fenestrae. As AMD is associated with reduced zinc concentrations in the serum and in ocular tissues, and dietary zinc supplementation is recommended to slow disease progression, we propose here that the elevation of zinc concentration may restore choriocapillaris fenestration resulting in improved nutrient flow and clearance of waste material in the retina.


Assuntos
Corioide/patologia , Células Endoteliais/patologia , Degeneração Macular/patologia , Proteínas de Membrana/metabolismo , Células Fotorreceptoras/patologia , Epitélio Pigmentado da Retina/patologia , Zinco/metabolismo , Animais , Células Cultivadas , Corioide/metabolismo , Células Endoteliais/metabolismo , Degeneração Macular/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo
17.
Alzheimers Dement (Amst) ; 13(1): e12232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458553

RESUMO

BACKGROUND: Posterior cortical atrophy (PCA) is the most common atypical variant of Alzheimer's disease (AD). Changes associated with PCA in the brain affect the visual cortex, but little is known about retinal changes in PCA. In this study, we explored retinal phenotypic variations in typical AD (tAD) and PCA. METHODS: Retinal phenotyping was carried out on ultra-widefield (UWF) images of 69 control, 24 tAD, and 25 PCA participants. RESULTS: Individuals with tAD (odds ratio [OR] = 2.76 [confidence interval (CI):1.24 to 6.10], P = .012) and PCA (OR = 3.40 [CI:1.25 to 9.22], P = .016) were more likely phenotyped as hard drusen. tAD (OR = 0.34 [CI:0.12 to 0.92], P = .035) were less likely to have soft drusen compared to control. Almost 3-fold increase in reticular pseudodrusen formation in tAD (OR = 2.93 [CI:1.10 to 7.76], P = .030) compared to control was estimated. DISCUSSION: Studying the peripheral retina may contribute to a better understanding of differences in retinal phenotypes of different AD variants.

18.
Alzheimers Dement (Amst) ; 13(1): e12170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748396

RESUMO

INTRODUCTION: People with Down syndrome (DS) are particularly susceptible to Alzheimer's disease (AD) due to the triplication of the amyloid precursor protein (APP) gene. In this cross-sectional study, we hypothesized that choroidal thinning reported in sporadic AD (sAD) is mirrored in adults with DS. METHODS: The posterior pole of the eye for 24 adults with DS and 16 age-matched controls (Ctrl) were imaged with optical coherence tomography. Choroidal thickness (ChT) was measured and analyzed in relation to cognitive status and cerebral amyloid beta (Aß) load. RESULTS: ChT was increased in people with DS (pwDS) compared to Ctrl. This increase was associated with gender differences and positively correlated with cerebral Aß load in a small subset. There was no significant correlation detected between ChT and age or cognitive status. DISCUSSION: In contrast to sAD this study found a significantly thicker choroid in pwDS. Whether these changes are related to Aß pathology in DS needs further investigation.

19.
Ophthalmol Sci ; 1(3): 100053, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36247811

RESUMO

Purpose: Micrometer-sized spherules formed of hydroxyapatite or whitlockite were identified within extracellular deposits that accumulate in the space between the basal lamina (BL) of retinal pigment epithelium (RPE) and the inner collagenous layer of Bruch's membrane (sub-RPE-BL space). This investigation aimed to characterize the morphologic features, structure, and distribution of these spherules in aged human eyes with and without clinical indications of age-related macular degeneration (AMD). Design: Experimental study. Participants: Five human eyes with varying degrees of sub-RPE-BL deposits were obtained from the University College London Institute of Ophthalmology and Moorfield's Eye Hospital Tissue Repository or the Advancing Sight Network. Two eyes were reported as having clinical indications of AMD (age, 76-87 years), whereas 3 were considered healthy (age, 69-91 years). Methods: Cadaveric eyes with sub-RPE-BL deposits were embedded in paraffin wax and sectioned to a thickness of 4-10 µm. Spherules were identified and characterized using high-resolution scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy, and time-of-flight secondary ion mass spectroscopy. Main Outcome Measures: High-resolution scanning electron micrographs of spherules, the size-frequency distribution of spherules including average diameter, and the distribution of particles across the central-peripheral axis. Elemental maps and time-of-flight secondary ion mass spectra also were obtained. Results: The precipitation of spherules is ubiquitous across the central, mid-peripheral, and far-peripheral axis in aged human eyes. No significant difference was found in the frequency of spherules along this axis. However, statistical analysis indicated that spherules exhibited significantly different sizes in these regions. In-depth analysis revealed that spherules in the sub-RPE-BL space of eyes with clinical signs of AMD were significantly larger (median diameter, 1.64 µm) than those in healthy aged eyes (median diameter, 1.16 µm). Finally, spherules showed great variation in surface topography and internal structure. Conclusions: The precipitation of spherules in the sub-RPE-BL space is ubiquitous across the central-peripheral axis in aged human eyes. However, a marked difference exists in the size and frequency of spherules in eyes with clinical signs of AMD compared to those without, suggesting that the size and frequency of spherules may be associated with AMD.

20.
Talanta ; 221: 121489, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076097

RESUMO

Simultaneous determination of proteins with micrometric resolution is a significant challenge. In this study, laser ablation (LA) inductively coupled plasma - mass spectrometry (ICP-MS) was employed to quantify the distribution of proteins associated to the eye disease age-related macular degeneration (AMD) using antibodies labelled with three different metal nanoclusters (MNCs). PtNCs, AuNCs and AgNCs contain hundreds of metal atoms and were used to detect metallothionein 1/2 (MT1/2), complement factor H (CFH) and amyloid precursor protein (APP) in retina, ciliary body, retinal pigment epithelium (RPE), choroid and sclera from human cadaveric eye sections. First, the labelling of MNCs bioconjugated primary antibodies (Ab) was optimised following an immunolabelling protocol to avoid the non-specific interaction of MNCs with the tissue. Then, the LA and ICP-MS conditions were studied to obtain high-resolution images for the simultaneous detection of the three labels at the same tissue section. A significant signal amplification was found when using AuNCs, AgNCs and PtNCs labelled Ab of 310, 723 and 1194 respectively. After the characterisation of MNCs labelled immunoprobes, the Ab labelling was used for determination of MT1/2, CFH and APP in the RPE-choroid-sclera, where accumulation of extracellular deposits related to AMD was observed. Experimental results suggest that this method is fully suitable for the simultaneous detection of at least three different proteins.


Assuntos
Proteínas do Olho/análise , Olho/diagnóstico por imagem , Terapia a Laser , Doenças Neurodegenerativas , Humanos , Espectrometria de Massas , Metalotioneína , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA