Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38530280

RESUMO

Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.


Assuntos
Metaloendopeptidases , Mitocôndrias , Transporte Proteico , Humanos , Endopeptidases , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteólise , Metaloendopeptidases/metabolismo
2.
Biomedicines ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140392

RESUMO

Immunotherapies with immune checkpoint inhibitors or adoptive cell transfer have become powerful tools to treat cancer. These treatments act via overcoming or alleviating tumor-induced immunosuppression, thereby enabling effective tumor clearance. Glioblastoma (GBM) represents the most aggressive, primary brain tumor that remains refractory to the benefits of immunotherapy. The immunosuppressive immune tumor microenvironment (TME), genetic and cellular heterogeneity, and disorganized vasculature hinder drug delivery and block effector immune cell trafficking and activation, consequently rendering immunotherapy ineffective. Within the TME, the mutual interactions between tumor, immune and endothelial cells result in the generation of positive feedback loops, which intensify immunosuppression and support tumor progression. We focus here on the role of aberrant tumor vasculature and how it can mediate hypoxia and immunosuppression. We discuss how immune cells use immunosuppressive signaling for tumor progression and contribute to the development of resistance to immunotherapy. Finally, we assess how a positive feedback loop between vascular normalization and immune cells, including myeloid cells, could be targeted by combinatorial therapies with immune checkpoint blockers and sensitize the tumor to immunotherapy.

3.
Front Aging Neurosci ; 13: 591475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716707

RESUMO

Aberrant secretion and accumulation of α-synuclein (α-Syn) as well as the loss of parkin function are associated with the pathogenesis of Parkinson's disease (PD). Our previous study suggested a functional interaction between those two proteins, showing that the extracellular α-Syn evoked post-translational modifications of parkin, leading to its autoubiquitination and degradation. While parkin plays an important role in mitochondrial biogenesis and turnover, including mitochondrial fission/fusion as well as mitophagy, the involvement of parkin deregulation in α-Syn-induced mitochondrial damage is largely unknown. In the present study, we demonstrated that treatment with exogenous α-Syn triggers mitochondrial dysfunction, reflected by the depolarization of the mitochondrial membrane, elevated synthesis of the mitochondrial superoxide anion, and a decrease in cellular ATP level. At the same time, we observed a protective effect of parkin overexpression on α-Syn-induced mitochondrial dysfunction. α-Syn-dependent disturbances of mitophagy were also shown to be directly related to reduced parkin levels in mitochondria and decreased ubiquitination of mitochondrial proteins. Also, α-Syn impaired mitochondrial biosynthesis due to the parkin-dependent reduction of PGC-1α protein levels. Finally, loss of parkin function as a result of α-Syn treatment induced an overall breakdown of mitochondrial homeostasis that led to the accumulation of abnormal mitochondria. These findings may thus provide the first compelling evidence for the direct association of α-Syn-mediated parkin depletion to impaired mitochondrial function in PD. We suggest that improvement of parkin function may serve as a novel therapeutic strategy to prevent mitochondrial impairment and neurodegeneration in PD (thereby slowing the progression of the disease).

4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008433

RESUMO

With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.


Assuntos
Citosol/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Sobrevivência Celular , Humanos , Biogênese de Organelas , Precursores de Proteínas/metabolismo , Transporte Proteico
5.
Acta Neurobiol Exp (Wars) ; 79(3): 276-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31587020

RESUMO

Parkin and alpha-synuclein (α-syn) are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Oligomerization/aggregation and excessive secretion of α-syn contributes to PD through free radical stress, mitochondrial impairment, and synaptic dysfunction. Parkin, an E3 ubiquitin ligase, is considered to be a pleiotropic, neuroprotective protein that modulates metabolic turnover and the accumulation of α-syn. This is in addition to parkin's role in counteracting the more distant effects of α-syn on cellular survival by altering proteasomal, autophagic, and calpain-mediated protein degradation pathways that can reduce α-syn levels. Moreover, parkin regulates mitochondrial turnover, cell survival, and immune phenomena - processes that are all known to be disturbed in PD. In addition, parkin might have an impact on the spreading and propagation of α-syn by controlling its post-translational modifications. On the other hand, recent research has shown that α-syn oligomers affect the expression, post-translational modification, and activity of parkin. This review focuses on the molecular mechanisms of cross-talk between parkin and α-syn in PD. The physical and functional interactions between α-syn and parkin, which have been incompletely characterized to-date, may present a new therapeutic avenue in PD and related synucleinopathies. The development of effective, clinically feasible modulators may offer great hopes for the the rapy of PD.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/genética , Animais , Humanos , Mutação/genética , Doença de Parkinson/metabolismo , Fosforilação , alfa-Sinucleína/metabolismo
7.
Stem Cell Rev Rep ; 15(3): 391-403, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31089880

RESUMO

Mobilization of stem cells from bone marrow (BM) into peripheral blood (PB) in response to tissue or organ injury, infections, strenuous exercise, or mobilization-inducing drugs is as we postulated result of a "sterile inflammation" in the BM microenvironment that triggers activation of the Complement Cascade (ComC). Therefore, we became interested in the role of the Nlrp3 inflammasome in this process and show for the first time that its activation in ATP-dependent manner orchestrates BM egress of hematopoietic stem/progenitor cells (HSPCs) as well as other stem cells, including mesenchymal stroma cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs). To explain this extracellular ATP is a potent activator of the Nrlp3 inflammasome, which leads to the release of interleukin 1ß and interleukin 18, as well as several danger-associated molecular pattern molecules (DAMPs) that activate the mannan-binding lectin (MBL) pathway of the ComC, from cells of the innate immunity network. In support of this mechanism, we demonstrate that the Nlrp3 inflammasome become activated in innate immunity cells by granulocyte colony stimulating factor (G-CSF) and AMD3100 in an ATP-dependent manner. Moreover, administration of the Nlrp3 inflammasome activator nigericin induces mobilization in mice, and the opposite effect is obtained by administration of an Nlrp3 inhibitor (MCC950) to mice mobilized by G-CSF or AMD3100. In summary, our results further support the crucial role of innate immunity, BM sterile inflammation, and novel role of the ATP-Nlrp3-ComC axis in the egress of stem cells into PB.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Inflamassomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nicho de Células-Tronco , Animais , Células Progenitoras Endoteliais/citologia , Furanos , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Imunidade Inata/efeitos dos fármacos , Indenos , Inflamassomos/agonistas , Inflamassomos/antagonistas & inibidores , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Nigericina/farmacologia , Sulfonamidas , Sulfonas/farmacologia
8.
Leukemia ; 33(4): 815-825, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846866

RESUMO

The mechanisms that regulate egress of hematopoietic stem/progenitor cells (HSPCs) into peripheral blood (PB) in response to stress, inflammation, tissue/organ injury, or administration of mobilization-inducing drugs are still not well understood, and because of the importance of stem cell trafficking in maintaining organism homeostasis, several complementary pathways are believed to be involved. Our group proposes that mobilization of HSPCs is mainly a result of sterile inflammation in the bone marrow (BM) microenvironment in response to pro-mobilizing stimuli and that during the initiation phase of the mobilization process BM-residing cells belonging to the innate immunity system, including granulocytes and monocytes, release danger-associated molecular pattern molecules (DAMPs, also known as alarmins), reactive oxygen species (ROS), as well as proteolytic and lipolytic enzymes. These factors together orchestrate the release of HSPCs into PB. One of the most important DAMPs released in the initiation phase of mobilization is extracellular adenosine triphosphate, a potent activator of the inflammasome. As a result of its activation, IL-1ß and IL-18 as well as other pro-mobilizing mediators, including DAMPs such as high molecular group box 1 (Hmgb1) and S100 calcium-binding protein A9 (S100a9), are released. These DAMPs are important activators of the complement cascade (ComC) in the mannan-binding lectin (MBL)-dependent pathway. Specifically, Hmgb1 and S100a9 bind to MBL, which leads to activation of MBL-associated proteases, which activate the ComC and in parallel also trigger activation of the coagulation cascade (CoaC). In this review, we will highlight the novel role of the innate immunity cell-expressed NLRP3 inflammasome, which, during the initiation phase of HSPC mobilization, couples purinergic signaling with the MBL-dependent pathway of the ComC and, in parallel, the CoaC for optimal release of HSPCs. These data are important to optimize the pharmacological mobilization of HSPCs.


Assuntos
Medula Óssea/imunologia , Ativação do Complemento/imunologia , Imunidade Inata/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Purinas/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Mobilização de Células-Tronco Hematopoéticas , Humanos , Inflamassomos/metabolismo , Inflamação/patologia
9.
Adv Exp Med Biol ; 1201: 239-259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31898790

RESUMO

A multilayered epithelium to fulfil its function must be replaced throughout the lifespan. This is possible due to the presence of multipotent, self-renewing epidermal stem cells that give rise to differentiated cell lineages: keratinocytes, hairs, as well as sebocytes. Till now the molecular mechanisms responsible for stem cell quiescent, proliferation, and differentiation have not been fully established. It is suggested that epidermal stem cells might change their fate, both due to intrinsic events and as a result of niche-dependent extrinsic signals; however other yet unknown factors may also be involved in this process. Given the increasing excitement evoked by self-renewing epidermal stem cells, as one of the sources of adult stem cells, it seems important to reveal the mechanisms that govern their fate. In this chapter, we describe recent advances in the characterisation of the epidermal stem cells and their compartments. Furthermore, we focus on the interplay between epidermal stem cells and extrinsic signals and their role in quiescence, proliferation, and differentiation of appropriate epidermal stem cell lineages.


Assuntos
Células Epidérmicas/citologia , Células-Tronco/citologia , Diferenciação Celular , Divisão Celular , Linhagem da Célula
10.
Mol Neurobiol ; 56(1): 125-140, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29681024

RESUMO

α-Synuclein (ASN) and parkin, a multifunctional E3 ubiquitin ligase, are two proteins that are associated with the pathophysiology of Parkinson's disease (PD). Excessive release of ASN, its oligomerization, aggregation, and deposition in the cytoplasm contribute to neuronal injury and cell death through oxidative-nitrosative stress induction, mitochondrial impairment, and synaptic dysfunction. In contrast, overexpression of parkin provides protection against cellular stresses and prevents dopaminergic neural cell loss in several animal models of PD. However, the influence of ASN on the function of parkin is largely unknown. Therefore, the aim of this study was to investigate the effect of extracellular ASN oligomers on parkin expression, S-nitrosylation, as well as its activity. For these investigations, we used rat pheochromocytoma (PC12) cell line treated with exogenous oligomeric ASN as well as PC12 cells with parkin overexpression and parkin knock-down. The experiments were performed using spectrophotometric, spectrofluorometric, and immunochemical methods. We found that exogenous ASN oligomers induce oxidative/nitrosative stress leading to parkin S-nitrosylation. Moreover, this posttranslational modification induced the elevation of parkin autoubiquitination and degradation of the protein. The decreased parkin levels resulted in significant cell death, whereas parkin overexpression protected against toxicity induced by extracellular ASN oligomers. We conclude that lowering parkin levels by extracellular ASN may significantly contribute to the propagation of neurodegeneration in PD pathology through accumulation of defective proteins as a consequence of parkin degradation.


Assuntos
Espaço Extracelular/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Sobrevivência Celular , Homeostase , Humanos , Óxido Nítrico/metabolismo , Nitrosação , Estresse Oxidativo , Células PC12 , Multimerização Proteica , Ratos , Ubiquitinação , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura
11.
Neurochem Int ; 108: 66-77, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28238791

RESUMO

Neuroinflammation and oxidative stress are key intertwined pathological factors in many neurological, particularly neurodegenerative diseases, such as Alzheimer's and Parkinson's disorders as well as autism. The present study was conducted to evaluate the protective effects of Selol, an organic selenium donor, against lipopolysaccharide (LPS)-mediated inflammation in rat brain. The results demonstrated that the peripheral administration of LPS in a dose of 100 µg/kg b.w. evoked typical pathological reaction known as systemic inflammatory response. Moreover, we observed elevated blood levels of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, as well as increased concentration of tumor necrosis factor-α (TNF-α) in LPS-treated animals. Selol significantly prevented these LPS-evoked changes. Subsequently, Selol protected against LPS-induced up-regulation of proinflammatory cytokines (Tnfa, Ifng, Il6) in rat brain cortex. The molecular mechanisms through which Selol prevented the neuroinflammation were associated with the inhibition of oxidized glutathione (GSSG) accumulation and with an increase of glutathione-associated enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR) as well as thioredoxin reductase (TrxR) activity and expression. Finally, we observed that Selol administration effectively protected against LPS-induced changes in the expression of brain-derived neurotrophic factor (Bdnf). In conclusion, our studies indicated that Selol effectively protects against LPS-induced neuroinflammation by inhibiting pro-inflammatory cytokine release, by boosting antioxidant systems, and by augmenting BDNF level. Therefore, Selol could be a multi-potent and effective drug useful in the treatment and prevention of brain disorders associated with neuroinflammation.


Assuntos
Encéfalo/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Estresse Oxidativo/fisiologia , Compostos de Selênio/farmacologia , Selênio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Compostos de Selênio/uso terapêutico
12.
Expert Opin Ther Pat ; 27(4): 427-438, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27841042

RESUMO

INTRODUCTION: Abnormal deposition of α-synuclein (ASN) is a hallmark and possible central mechanism of Parkinson's disease and other synucleinopathies. Their therapy is currently hampered by the lack of early, screening-compatible diagnostic methods and efficient treatments. Areas covered: Patent applications related to synucleinopathies obtained from Patentscope and Espacenet databases are described against the background of current knowledge regarding the regulatory mechanisms of ASN behavior including alternative splicing, post-translational modifications, molecular interactions, aggregation, degradation, and changes in localization. Expert opinion: As the central pathological feature and possibly one of root causes in a number of neurodegenerative diseases, deregulation of ASN is a potentially optimal diagnostic and therapeutic target. Changes in total ASN may have diagnostic value, especially if non-invasive /peripheral tissue tests can be developed. Targeting the whole ASN pool for therapeutic purposes may be problematic, however. ASN mutations, truncation, and post-translational modifications have great potential value; therapeutic approaches selective towards aggregated or aggregation-prone ASN forms may lead to more successful and safe treatments. Numerous ASN interactions with signaling pathways, protein degradation and stress mechanisms widen its potential therapeutic significance dramatically. However, significant improvement in the basic knowledge on ASN is necessary to fully exploit these opportunities.


Assuntos
Desenho de Fármacos , Doenças Neurodegenerativas/tratamento farmacológico , alfa-Sinucleína/metabolismo , Animais , Antiparkinsonianos/farmacologia , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Patentes como Assunto , Transdução de Sinais/efeitos dos fármacos
13.
PLoS One ; 9(4): e94259, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722055

RESUMO

α-Synuclein (ASN) plays an important role in pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. Novel and most interesting data showed elevated tauopathy in PD and suggested relationship between ASN and Tau protein. However, the mechanism of ASN-evoked Tau protein modification is not fully elucidated. In this study we investigated the role of extracellular ASN in Tau hyperphosphorylation in rat pheochromocytoma (PC12) cells and the involvement of glycogen synthase kinase-3ß (GSK-3ß) and cyclin-dependent kinase 5 (CDK5) in ASN-dependent Tau modification. Our results indicated that exogenously added ASN increases Tau phosphorylation at Ser396. Accordingly, the GSK-3ß inhibitor (SB-216763) prevented ASN-evoked Tau hyperphosphorylation, but the CDK5 inhibitor had no effect. Moreover, western blot analysis showed that ASN affected GSK-3ß via increasing of protein level and activation of this enzyme. GSK-3ß activity evaluated by its phosphorylation status assay showed that ASN significantly increased the phosphorylation of this enzyme at Tyr216 with parallel decrease in phosphorylation at Ser9, indicative of stimulation of GSK-3ß activity. Moreover, the effect of ASN on microtubule (MT) destabilization and cell death with simultaneous the involvement of GSK-3ß in these processes were analyzed. ASN treatment increased the amount of free tubulin and concomitantly reduced the amount of polymerized tubulin and SB-216763 suppressed these ASN-induced changes in tubulin, indicating that GSK-3ß is involved in ASN-evoked MT destabilization. ASN-induced apoptotic processes lead to decrease in PC12 cells viability and SB-216763 protected those cells against ASN-evoked cytotoxicity. Concluding, extracellular ASN is involved in GSK-3ß-dependent Tau hyperphosphorylation, which leads to microtubule destabilization. GSK-3ß inhibition may be an effective strategy for protecting against ASN-induced cytotoxicity.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Microtúbulos/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Apoptose , Citoesqueleto/metabolismo , Glicogênio Sintase Quinase 3 beta , Indóis/química , Maleimidas/química , Células PC12 , Fosforilação , Ratos , Fatores de Tempo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA