Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Contrast Media Mol Imaging ; 2018: 9641527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498403

RESUMO

Background: Manganese-enhanced MRI (MEMRI) has the potential to identify viable myocardium and quantify calcium influx and handling. Two distinct manganese contrast media have been developed for clinical application, mangafodipir and EVP1001-1, employing different strategies to mitigate against adverse effects resulting from calcium-channel agonism. Mangafodipir delivers manganese ions as a chelate, and EVP1001-1 coadministers calcium gluconate. Using myocardial T1 mapping, we aimed to explore chelated and nonchelated manganese contrast agents, their mechanism of myocardial uptake, and their application to infarcted hearts. Methods: T1 mapping was performed in healthy adult male Sprague-Dawley rats using a 7T MRI scanner before and after nonchelated (EVP1001-1 or MnCl2 (22 µmol/kg)) or chelated (mangafodipir (22-44 µmol/kg)) manganese-based contrast media in the presence of calcium channel blockade (diltiazem (100-200 µmol/kg/min)) or sodium chloride (0.9%). A second cohort of rats underwent surgery to induce anterior myocardial infarction by permanent coronary artery ligation or sham surgery. Infarcted rats were imaged with standard gadolinium delayed enhancement MRI (DEMRI) with inversion recovery techniques (DEMRI inversion recovery) as well as DEMRI T1 mapping. A subsequent MEMRI scan was performed 48 h later using either nonchelated or chelated manganese and T1 mapping. Finally, animals were culled at 12 weeks, and infarct size was quantified histologically with Masson's trichrome (MTC). Results: Both manganese agents induced concentration-dependent shortening of myocardial T1 values. This was greatest with nonchelated manganese, and could be inhibited by 30-43% with calcium-channel blockade. Manganese imaging successfully delineated the area of myocardial infarction. Indeed, irrespective of the manganese agent, there was good agreement between infarct size on MEMRI T1 mapping and histology (bias 1.4%, 95% CI -14.8 to 17.1 P>0.05). In contrast, DEMRI inversion recovery overestimated infarct size (bias 11.4%, 95% CI -9.1 to 31.8 P=0.002), as did DEMRI T1 mapping (bias 8.2%, 95% CI -10.7 to 27.2 P=0.008). Increased manganese uptake was also observed in the remote myocardium, with remote myocardial ∆T1 inversely correlating with left ventricular ejection fraction after myocardial infarction (r=-0.61, P=0.022). Conclusions: MEMRI causes concentration and calcium channel-dependent myocardial T1 shortening. MEMRI with T1 mapping provides an accurate assessment of infarct size and can also identify changes in calcium handling in the remote myocardium. This technique has potential applications for the assessment of myocardial viability, remodelling, and regeneration.


Assuntos
Meios de Contraste/farmacologia , Vasos Coronários , Imageamento por Ressonância Magnética , Manganês/farmacologia , Infarto do Miocárdio , Miocárdio/metabolismo , Animais , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/metabolismo , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Neuropathol Appl Neurobiol ; 43(6): 477-491, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28039950

RESUMO

AIMS: Normal neurovascular coupling, mediated by the fine interplay and communication of cells within the neurovascular unit, is critical for maintaining normal brain activity and cognitive function. This study investigated whether, with advancing age there is disruption of neurovascular coupling and specific cellular components of the neurovascular unit, and whether the effects of increasing amyloid (a key feature of Alzheimer's disease) would exacerbate these changes. METHODS: Wild-type mice, in which amyloid deposition is absent, were compared to transgenic amyloid precursor protein (APP) littermates (TgSwDI) which develop age-dependent increases in amyloid. Baseline cerebral blood flow and responses to whisker stimulation were measured. Components of the neurovascular unit (astrocytes, end-feet, pericytes, microglia) were measured by immunohistochemistry. RESULTS: Neurovascular coupling was progressively impaired with increasing age (starting at 12 months) but was not further altered in TgSwDI mice. Aged mice showed reduced vascular pericyte coverage relative to young but this was not related to neurovascular function. Aged mice displayed significant reductions in astrocytic end-feet expression of aquaporin-4 on blood vessels compared to young mice, and a prominent increase in microglial proliferation which correlated with neurovascular function. CONCLUSIONS: Strategies aimed to restore the loss of astrocytic end feet contact and reduce gliosis may improve neurovascular coupling.


Assuntos
Envelhecimento , Astrócitos/patologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiopatologia , Gliose/etiologia , Acoplamento Neurovascular , Peptídeos beta-Amiloides/metabolismo , Animais , Córtex Cerebral/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Pericitos/patologia
3.
Genes Brain Behav ; 15(2): 221-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26586578

RESUMO

Brain-derived neurotrophic factor (BDNF) signaling is implicated in the etiology of many psychiatric disorders associated with altered emotional processing. Altered peripheral (plasma) BDNF levels have been proposed as a biomarker for neuropsychiatric disease risk in humans. However, the relationship between peripheral and central BDNF levels and emotional brain activation is unknown. We used heterozygous BDNF knockdown rats (BDNF(+/-)) to examine the effects of genetic variation in the BDNF gene on peripheral and central BDNF levels and emotional brain activation as assessed by awake functional magnetic resonance imaging (fMRI). BDNF(+/-) and control rats were trained to associate a flashing light (conditioned stimulus; CS) with foot-shock, and brain activation in response to the CS was measured 24 h later in awake rats using fMRI. Central and peripheral BDNF levels were decreased in BDNF(+/-) rats compared with control rats. Activation of fear circuitry (amygdala, periaqueductal gray, granular insular) was seen in control animals; however, activation of this circuitry was absent in BDNF(+/-) animals. Behavioral experiments confirmed impaired conditioned fear responses in BDNF(+/-) rats, despite intact innate fear responses. These data confirm a positive correlation [r = 0.86, 95% confidence interval (0.55, 0.96); P = 0.0004] between peripheral and central BDNF levels and indicate a functional relationship between BDNF levels and emotional brain activation as assessed by fMRI. The results demonstrate the use of rodent fMRI as a sensitive tool for measuring brain function in preclinical translational studies using genetically modified rats and support the use of peripheral BDNF as a biomarker of central affective processing.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Tonsila do Cerebelo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Condicionamento Clássico/fisiologia , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Ratos Transgênicos , Vigília
4.
Int J Mol Imaging ; 2015: 507909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954516

RESUMO

Objectives. We investigated whether ultrasmall paramagnetic particles of iron oxide- (USPIO-) enhanced magnetic resonance imaging (MRI) can detect experimental chronic allograft damage in a murine renal allograft model. Materials and Methods. Two cohorts of mice underwent renal transplantation with either a syngeneic isograft or allograft kidney. MRI scanning was performed prior to and 48 hours after USPIO infusion using T2(∗)-weighted protocols. R2(∗) values were calculated to indicate the degree of USPIO uptake. Native kidneys and skeletal muscle were imaged as reference tissues and renal explants analysed by histology and electron microscopy. Results. R2(∗) values in the allograft group were higher compared to the isograft group when indexed to native kidney (median 1.24 (interquartile range: 1.12 to 1.36) versus 0.96 (0.92 to 1.04), P < 0.01). R2(∗) values were also higher in the allograft transplant when indexed to skeletal muscle (6.24 (5.63 to 13.51)) compared to native kidney (2.91 (1.11 to 6.46) P < 0.05). Increased R2(∗) signal in kidney allograft was associated with macrophage and iron staining on histology. USPIO were identified within tissue resident macrophages on electron microscopy. Conclusion. USPIO-enhanced MRI identifies macrophage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA