Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photoacoustics ; 24: 100297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34522608

RESUMO

Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.

2.
Neuropsychopharmacology ; 46(11): 1969-1980, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34162997

RESUMO

Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Sinais (Psicologia) , Comportamento de Procura de Droga , Extinção Psicológica , Córtex Pré-Frontal , Ratos , Recidiva , Autoadministração
3.
Elife ; 82019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30801248

RESUMO

In abstinent drug addicts, cues formerly associated with drug-taking experiences gain relapse-inducing potency ('incubate') over time. Animal models of incubation may help develop treatments to prevent relapse, but these models have ubiquitously focused on the role of conditioned stimuli (CSs) signaling drug delivery. Discriminative stimuli (DSs) are unique in that they exert stimulus-control over both drug taking and drug seeking behavior and are difficult to extinguish. For this reason, incubation of the excitatory effects of DSs that signal drug availability, not yet examined in preclinical studies, could be relevant to relapse prevention. We trained rats to self-administer cocaine (or palatable food) under DS control, then investigated DS-controlled incubation of craving, in the absence of drug-paired CSs. DS-controlled cocaine (but not palatable food) seeking incubated over 60 days of abstinence and persisted up to 300 days. Understanding the neural mechanisms of this DS-controlled incubation holds promise for drug relapse treatments.


Assuntos
Cocaína/efeitos adversos , Fissura , Prevenção Secundária/métodos , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Modelos Animais de Doenças , Ratos , Recidiva
4.
Bio Protoc ; 9(23): e3445, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654940

RESUMO

In abstinent drug addicts, cues formerly associated with drug-taking experiences gain relapse-inducing potency ('incubate') over time. Animal models of incubation may help in developing treatments for relapse prevention. However, these models have primarily focused on the role of conditioned stimuli (CSs) signaling drug delivery and not on discriminative stimuli (DSs), which signal drug availability and are also known to play a major role in drug relapse. We recently showed that DS-controlled cocaine seeking in rats also incubates during abstinence and persists up to 300 days. We used a trial-based procedure to train male and female rats to discriminate between two light cues: one light cue (DS+) signaled the availability of cocaine reward and the second light cue (DS-) signaled the absence of reward. Rats learned to press a central retractable lever during trials in which the DS+ cue was presented and to suppress responding when the DS- cue was presented. Here, we provide a detailed protocol for the behavioral procedure used in our study. The trial-based design of this behavior lends itself well to time-locked in vivo recording and manipulation approaches that can be used to identify neurobiological mechanisms underlying the contributions of DSs to drug relapse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA