Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(50): 23010-23018, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475637

RESUMO

Novel approaches to the functionalization of commodity polymers could provide avenues for the synthesis of materials for next-generation electronic devices. Herein, we present a catalytic method for the conversion of common unsaturated polymers such as polybutadiene, polyisoprene, and styrene-butadiene copolymers [e.g., polystyrene-block-polybutadiene-block-polystyrene and poly(styrene-stat-butadiene)] to poly(acetylene) (PA)-based multiblock copolymers with conjugation lengths of up to ∼20, making them potentially suitable for electronics applications. Additionally, we demonstrate the application of this method to the formal conversion of polyethylene─the most widely produced thermoplastic─into PA-containing multiblock materials.

2.
Chem Mater ; 34(23): 10623-10630, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323159

RESUMO

We designed porous polymers with a tungsten-calix[4]arene imido complex as the nitrosamine receptor for the efficient extraction of tobacco-specific nitrosamines (TSNAs) from water. The interaction between the metallocalix[4]arene and the TSNA, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) was investigated. We found that the incorporation of the nitrosamine receptor into porous polymers increased their selectivity toward NNK over nicotine. The polymer with an optimal ratio of calixarene-containing and porosity-inducing building blocks showed a high maximum adsorption capacity of up to 203 mg/g toward NNK under sonication, which was among the highest values reported. The adsorbed NNK could be removed from the polymer by soaking it in acetonitrile, enabling the adsorbent to be reused. A similar extraction efficiency to that under sonication could be achieved using the polymer-coated magnetic particles under stirring. We also proved that the material could efficiently extract TSNAs from real tobacco extract. This work not only provides an efficient material for the extraction of TSNAs but also offers a design strategy for efficient adsorbents.

3.
ACS Nano ; 14(9): 11605-11612, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32865975

RESUMO

The capping reagent plays an essential role in the functional properties of gold nanoparticles (AuNPs). Multiple stimuli-responsive materials are generated via diverse surface modification. The ability of the organic ligand shell on a gold surface to create a porous shell capable of binding small molecules is demonstrated as an approach to detect molecules, such as methane, that would be otherwise difficult to sense. Thiols are the most studied capping ligands of AuNPs used in chemiresistors. Phosphine capping groups are usually seen as stabilizers in synthesis and catalysis. However, by virtue of the pyramidal shape of triarylphosphines, they are natural candidates to create intrinsic voids within the ligand shell of AuNPs. In this work, surface-functionalized (capped) AuNPs with chelating phosphine ligands are synthesized via two synthetic routes, enabling chemiresistive methane gas detection at sub-100 ppm levels. These AuNPs are compared to thiol-capped AuNPs, and studies were undertaken to evaluate structure-property relationships for their performance in the detection of hydrocarbons. Polymer overcoatings applied to the conductive networks of the functionalized AuNP arrays were shown to reduce resistivity by promoting the formation of conduction pathways with decreased core-core distance between nanoparticles. Observations made in the context of developing methane sensors provide insight relevant to applications of phosphine or phosphine-containing surface groups in functional AuNP materials.

4.
Org Biomol Chem ; 17(43): 9510-9513, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31657418

RESUMO

Nucleophilic addition of Grignard reagents to tetrahydro-ß-carboline (THC) N-sulfonyl N,S-acetal generates exclusively cis-1,3-disubstituted THCs with a unique 1,3-diaxial conformation. The stereochemical relationship of the 1,3-substituents was confirmed by 2-dimensional NMR spectroscopy and X-ray crystallography. The mechanism of the reaction is proposed based on crystal structures and molecular orbital calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA