RESUMO
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Assuntos
Aneuploidia , Aberrações Cromossômicas , Humanos , Animais , Camundongos , Cariotipagem , Cariótipo , MamíferosRESUMO
Centromere association of the chromosomal passenger complex (CPC; Borealin-Survivin-INCENP-Aurora B) and Sgo1 is crucial for chromosome biorientation, a process essential for error-free chromosome segregation. Phosphorylated histone H3 Thr3 (H3T3ph; directly recognized by Survivin) and histone H2A Thr120 (H2AT120ph; indirectly recognized via Sgo1), together with CPC's intrinsic nucleosome-binding ability, facilitate CPC centromere recruitment. However, the molecular basis for CPC-Sgo1 binding and how their physical interaction influences CPC centromere localization are lacking. Here, using an integrative structure-function approach, we show that the "histone H3-like" Sgo1 N-terminal tail-Survivin BIR domain interaction acts as a hotspot essential for CPC-Sgo1 assembly, while downstream Sgo1 residues and Borealin contribute for high-affinity binding. Disrupting Sgo1-Survivin interaction abolished CPC-Sgo1 assembly and perturbed CPC centromere localization and function. Our findings reveal that Sgo1 and H3T3ph use the same surface on Survivin to bind CPC. Hence, it is likely that these interactions take place in a spatiotemporally restricted manner, providing a rationale for the Sgo1-mediated "kinetochore-proximal" CPC centromere pool.
Assuntos
Proteínas de Ciclo Celular , Centrômero , Histonas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Histonas/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Fosforilação , Survivina/genética , Survivina/metabolismoRESUMO
Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.
Assuntos
Aneuploidia , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos , Proteína 9 Associada à CRISPR , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromotripsia , Crescimento e Desenvolvimento/genética , Humanos , Interfase , Micronúcleos com Defeito Cromossômico , Mitose , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/metabolismo , Análise de Sequência de DNA , Análise de Célula ÚnicaRESUMO
Elevated expression of non-receptor tyrosine kinase FER is an independent prognosticator that correlates with poor survival of high-grade and basal/triple-negative breast cancer (TNBC) patients. Here, we show that high FER levels are also associated with improved outcomes after adjuvant taxane-based combination chemotherapy in high-risk, HER2-negative patients. In TNBC cells, we observe a causal relation between high FER levels and sensitivity to taxanes. Proteomics and mechanistic studies demonstrate that FER regulates endosomal recycling, a microtubule-dependent process that underpins breast cancer cell invasion. Using chemical genetics, we identify DCTN2 as a FER substrate. Our work indicates that the DCTN2 tyrosine 6 is essential for the development of tubular recycling domains in early endosomes and subsequent propagation of TNBC cell invasion in 3D. In conclusion, we show that high FER expression promotes endosomal recycling and represents a candidate predictive marker for the benefit of adjuvant taxane-containing chemotherapy in high-risk patients, including TNBC patients.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Endossomos/metabolismo , Feminino , Humanos , Taxoides/farmacologia , Taxoides/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
The Chromosomal Passenger Complex (CPC) regulates a plethora of processes during multiple stages of nuclear and cytoplasmic division. Early during mitosis, the CPC is recruited to centromeres and kinetochores, and ensures that the duplicated chromosomes become properly connected to microtubules from opposite poles of the mitotic spindle. Progression into anaphase is accompanied by a striking relocation of the CPC from centromeres to the antiparallel microtubule overlaps of the anaphase spindle and to the equatorial cortex. This translocation requires direct interactions of the CPC with the kinesin-6 family member MKLP2/KIF20A, and the inactivation of cyclin B-cyclin-dependent kinase-1 (CDK1). Here, we review recent progress in the regulation of this relocation event. Furthermore, we discuss why the CPC must be relocated during early anaphase in light of recent advances in the functions of the CPC post metaphase.
Assuntos
Anáfase , Proteínas Cromossômicas não Histona , Aurora Quinase B/genética , Centrômero , Humanos , Microtúbulos , Mitose , Fuso AcromáticoRESUMO
Recent work published in Cell Reports and Developmental Cell from Sen et al., Orr et al., and Papini et al., demonstrates that midzone-based Aurora B resolves chromosome segregation errors during anaphase.
Assuntos
Anáfase , Segregação de Cromossomos , Aurora Quinase BRESUMO
Central to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq-a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Análise de Célula Única/métodos , Proliferação de Células/genética , Cromatina/genética , Cromossomos Humanos , Dosagem de Genes , Humanos , Cariótipo , Cariotipagem , Microscopia Confocal , Mitose , Organoides/crescimento & desenvolvimento , Organoides/patologia , Fuso Acromático/genéticaRESUMO
The shugoshin proteins are universal protectors of centromeric cohesin during mitosis and meiosis. The binding of human hSgo1 to the PP2A-B56 phosphatase through a coiled-coil (CC) region mediates cohesion protection during mitosis. Here we undertook a structure function analysis of the PP2A-B56-hSgo1 complex, revealing unanticipated aspects of complex formation and function. We establish that a highly conserved pocket on the B56 regulatory subunit is required for hSgo1 binding and cohesion protection during mitosis in human somatic cells. Consistent with this, we show that hSgo1 blocks the binding of PP2A-B56 substrates containing a canonical B56 binding motif. We find that PP2A-B56 bound to hSgo1 dephosphorylates Cdk1 sites on hSgo1 itself to modulate cohesin interactions. Collectively our work provides important insight into cohesion protection during mitosis.
Assuntos
Proteínas de Ciclo Celular , Proteína Fosfatase 2 , Proteína Quinase CDC2 , Proteínas de Ciclo Celular/genética , Centrômero , Humanos , Meiose , Mitose , Proteína Fosfatase 2/genéticaRESUMO
How chromatin bridges are relayed to the chromosomal passenger complex (CPC) during mammalian cell division is unknown. In this issue, Petsalaki and Zachos (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202008029) show that the DNA damage checkpoint kinases ATM and Chk2 signal to the CPC to associate with a pool of cytoskeletal regulators, MKLP2-Cep55, in the midbody center and to delay abscission.
Assuntos
Citocinese , Fuso Acromático , Animais , Aurora Quinase B/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Células HeLa , HumanosRESUMO
During cytokinesis, signals from the anaphase spindle direct the formation and position of a contractile ring at the cell cortex [1]. The chromosomal passenger complex (CPC) participates in cytokinesis initiation by signaling from the spindle midzone and equatorial cortex [2], but the mechanisms underlying the anaphase-specific CPC localization are currently unresolved. Accumulation of the CPC at these sites requires the presence of microtubules and the mitotic kinesin-like protein 2, MKLP2 (KIF20A), a member of the kinesin-6 family [2-7], and this has led to the hypothesis that the CPC is transported along microtubules by MKLP2 [3-5, 7]. However, the structure of the MKLP2 motor domain with its extended neck-linker region suggests that this kinesin might not be able to drive processive transport [8, 9]. Furthermore, experiments in Xenopus egg extracts indicated that the CPC might be transported by kinesin-4, KIF4A [10]. Finally, CPC-MKLP2 complexes might be directly recruited to the equatorial cortex via association with actin and myosin II, independent of kinesin activity [4, 8]. Using microscopy-based assays with purified proteins, we demonstrate that MKLP2 is a processive plus-end directed motor that can transport the CPC along microtubules in vitro. In cells, strong suppression of MKLP2-dependent CPC motility by expression of an MKLP2 P-loop mutant perturbs CPC accumulation at both the spindle midzone and equatorial cortex, whereas a weaker inhibition of MKLP2 motor using Paprotrain mainly affects CPC localization to the equatorial cortex. Our data indicate that control of cytokinesis initiation by the CPC requires its directional MKLP2-dependent transport.
Assuntos
Anáfase/fisiologia , Citocinese , Cinesinas/genética , Família Multigênica , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Transporte ProteicoRESUMO
Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase-dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT-MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B-dependent kinetochore phosphorylation.
Assuntos
Aurora Quinase B/metabolismo , Segregação de Cromossomos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinetocoros/enzimologia , Microtúbulos/enzimologia , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinase B/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Cinesinas/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de TempoRESUMO
Cytokinesis begins upon anaphase onset. An early step involves local activation of the small GTPase RhoA, which triggers assembly of an actomyosin-based contractile ring at the equatorial cortex. Here, we delineated the contributions of PLK1 and Aurora B to RhoA activation and cytokinesis initiation in human cells. Knock-down of PRC1, which disrupts the spindle midzone, revealed the existence of two pathways that can initiate cleavage furrow ingression. One pathway depends on a well-organized spindle midzone and PLK1, while the other depends on Aurora B activity and centralspindlin at the equatorial cortex and can operate independently of PLK1. We further show that PLK1 inhibition sequesters centralspindlin onto the spindle midzone, making it unavailable for Aurora B at the equatorial cortex. We propose that PLK1 activity promotes the release of centralspindlin from the spindle midzone through inhibition of PRC1, allowing centralspindlin to function as a regulator of spindle midzone formation and as an activator of RhoA at the equatorial cortex.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/enzimologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Fuso Acromático/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Quinase 1 Polo-LikeRESUMO
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Assuntos
Citocinese/genética , Neoplasias/genética , Neoplasias/patologia , Aneuploidia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Centrossomo/patologia , Genoma/genética , HumanosRESUMO
Precise regulation of kinetochore-microtubule attachments is essential for successful chromosome segregation. Central to this regulation is Aurora B kinase, which phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the N-terminal "tail" domain of Hec1, which is a component of the NDC80 complex, a force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, other mitotic kinases likely contribute to Hec1 phosphorylation. In this study, we demonstrate that Aurora A kinase regulates kinetochore-microtubule dynamics of metaphase chromosomes, and we identify Hec1 S69, a previously uncharacterized phosphorylation target site in the Hec1 tail, as a critical Aurora A substrate for this regulation. Additionally, we demonstrate that Aurora A kinase associates with inner centromere protein (INCENP) during mitosis and that INCENP is competent to drive accumulation of the kinase to the centromere region of mitotic chromosomes. These findings reveal that both Aurora A and B contribute to kinetochore-microtubule attachment dynamics, and they uncover an unexpected role for Aurora A in late mitosis.
Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Metáfase/fisiologia , Fosforilação , Potoroidae , Ligação Proteica/fisiologia , Fuso Acromático/metabolismoRESUMO
Faithful chromosome segregation during mitosis requires that the kinetochores of all sister chromatids become stably connected to microtubules derived from opposite spindle poles. How stable chromosome bi-orientation is accomplished and coordinated with anaphase onset remains incompletely understood. Here we show that stable chromosome bi-orientation requires inner centromere localization of the non-enzymatic subunits of the chromosomal passenger complex (CPC) to maintain centromeric cohesion. Precise inner centromere localization of the CPC appears less relevant for Aurora B-dependent resolution of erroneous kinetochore-microtubule (KT-MT) attachments and for the stabilization of bi-oriented KT-MT attachments once sister chromatid cohesion is preserved via knock-down of WAPL. However, Aurora B inner centromere localization is essential for mitotic checkpoint silencing to allow spatial separation from its kinetochore substrate KNL1. Our data infer that the CPC is localized at the inner centromere to sustain centromere cohesion on bi-oriented chromosomes and to coordinate mitotic checkpoint silencing with chromosome bi-orientation.
Assuntos
Aurora Quinase B/metabolismo , Centrômero/ultraestrutura , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Anáfase , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Inativação Gênica , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Fosforilação , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismoRESUMO
The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.
Assuntos
Baculoviridae/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Genoma Humano/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação Puntual , Proteínas Serina-Treonina Quinases/genéticaRESUMO
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.
RESUMO
Sister-chromatid disjunction in anaphase requires the resolution of DNA catenanes by topoisomerase II together with Plk1-interacting checkpoint helicase (PICH) and Bloom's helicase (BLM). We here identify Rif1 as a factor involved in the resolution of DNA catenanes that are visible as ultrafine DNA bridges (UFBs) in anaphase to which PICH and BLM localize. Rif1, which during interphase functions downstream of 53BP1 in DNA repair, is recruited to UFBs in a PICH-dependent fashion, but independently of 53BP1 or BLM. Similar to PICH and BLM, Rif1 promotes the resolution of UFBs: its depletion increases the frequency of nucleoplasmic bridges and RPA70-positive UFBs in late anaphase. Moreover, in the absence of Rif1, PICH, or BLM, more nuclear bodies with damaged DNA arise in ensuing G1 cells, when chromosome decatenation is impaired. Our data reveal a thus far unrecognized function for Rif1 in the resolution of UFBs during anaphase to protect genomic integrity.
Assuntos
Anáfase , DNA/metabolismo , Instabilidade Genômica , Proteínas de Ligação a Telômeros/metabolismo , Proteína Quinase CDC2/metabolismo , Cromátides , Dano ao DNA , Fase G1 , Células HeLa , Humanos , Células MCF-7 , Micronúcleo Germinativo/metabolismo , Transporte ProteicoRESUMO
The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In budding yeast, this requires dephosphorylation of the microtubule-binding (MTB) domain of the INCENP analog Sli15. The mechanistic basis for this relocalization in metazoans is incompletely understood. We demonstrate that the putative coiled-coil domain within INCENP drives midzone localization of Aurora B via a direct, electrostatic interaction with microtubules. Furthermore, we provide evidence that the CPC multimerizes via INCENP's centromere-targeting domain (CEN box), which increases the MTB affinity of INCENP. In (pro)metaphase, the MTB affinity of INCENP is outcompeted by the affinity of its CEN box for centromeres, while at anaphase onsetwhen the histone mark H2AT120 is dephosphorylatedINCENP and Aurora B switch from centromere to microtubule localization.
Assuntos
Aurora Quinase B/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Microtúbulos/metabolismo , Anáfase , Aurora Quinase B/genética , Segregação de Cromossomos , Células HeLa/fisiologia , Humanos , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centromeres through Shugoshin-1 (Sgo1). In non-transformed RPE-1 cells, Aurora B, Sgo1, and PP2A-B56 are enriched on centromeres and levels diminish as chromosomes establish bi-oriented attachments. Elevating Sgo1 levels at centromeres recruits excess PP2A-B56, and this counteracts Aurora B kinase activity, undermining efficient correction of kinetochore-microtubule attachment errors. Conversely, Sgo1-depleted cells display reduced centromeric localization of Aurora B, whereas the remaining kinase is hyperactive due to concomitant reduction of centromeric PP2A-B56. Our data suggest that Sgo1 can tune the stability of kinetochore-microtubule attachments through recruitment of PP2A-B56 that balances Aurora B activity at the centromere.