Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Rep ; 14(1): 12249, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806503

RESUMO

Members of the family Trichomeriaceae, belonging to the Chaetothyriales order and the Ascomycota phylum, are known for their capability to inhabit hostile environments characterized by extreme temperatures, oligotrophic conditions, drought, or presence of toxic compounds. The genus Knufia encompasses many polyextremophilic species. In this report, the genomic and morphological features of the strain FJI-L2-BK-P2 presented, which was isolated from the Mars 2020 mission spacecraft assembly facility located at the Jet Propulsion Laboratory in Pasadena, California. The identification is based on sequence alignment for marker genes, multi-locus sequence analysis, and whole genome sequence phylogeny. The morphological features were studied using a diverse range of microscopic techniques (bright field, phase contrast, differential interference contrast and scanning electron microscopy). The phylogenetic marker genes of the strain FJI-L2-BK-P2 exhibited highest similarities with type strain of Knufia obscura (CBS 148926T) that was isolated from the gas tank of a car in Italy. To validate the species identity, whole genomes of both strains (FJI-L2-BK-P2 and CBS 148926T) were sequenced, annotated, and strain FJI-L2-BK-P2 was confirmed as K. obscura. The morphological analysis and description of the genomic characteristics of K. obscura FJI-L2-BK-P2 may contribute to refining the taxonomy of Knufia species. Key morphological features are reported in this K. obscura strain, resembling microsclerotia and chlamydospore-like propagules. These features known to be characteristic features in black fungi which could potentially facilitate their adaptation to harsh environments.


Assuntos
Ascomicetos , Marte , Filogenia , Astronave , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Genoma Fúngico/genética , Genômica/métodos
3.
Heliyon ; 10(8): e29602, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665576

RESUMO

Objectives: To evaluate the added benefit of integrating features from pre-treatment MRI (radiomics) and digitized post-surgical pathology slides (pathomics) in prostate cancer (PCa) patients for prognosticating outcomes post radical-prostatectomy (RP) including a) rising prostate specific antigen (PSA), and b) extraprostatic-extension (EPE). Methods: Multi-institutional data (N = 58) of PCa patients who underwent pre-treatment 3-T MRI prior to RP were included in this retrospective study. Radiomic and pathomic features were extracted from PCa regions on MRI and RP specimens delineated by expert clinicians. On training set (D1, N = 44), Cox Proportional-Hazards models MR, MP and MRaP were trained using radiomics, pathomics, and their combination, respectively, to prognosticate rising PSA (PSA > 0.03 ng/mL). Top features from MRaP were used to train a model to predict EPE on D1 and test on external dataset (D2, N = 14). C-index, Kalplan-Meier curves were used for survival analysis, and area under ROC (AUC) was used for EPE. MRaP was compared with the existing post-treatment risk-calculator, CAPRA (MC). Results: Patients had median follow-up of 34 months. MRaP (c-index = 0.685 ± 0.05) significantly outperformed MR (c-index = 0.646 ± 0.05), MP (c-index = 0.631 ± 0.06) and MC (c-index = 0.601 ± 0.071) (p < 0.0001). Cross-validated Kaplan-Meier curves showed significant separation among risk groups for rising PSA for MRaP (p < 0.005, Hazard Ratio (HR) = 11.36) as compared to MR (p = 0.64, HR = 1.33), MP (p = 0.19, HR = 2.82) and MC (p = 0.10, HR = 3.05). Integrated radio-pathomic model MRaP (AUC = 0.80) outperformed MR (AUC = 0.57) and MP (AUC = 0.76) in predicting EPE on external-data (D2). Conclusions: Results from this preliminary study suggest that a combination of radiomic and pathomic features can better predict post-surgical outcomes (rising PSA and EPE) compared to either of them individually as well as extant prognostic nomogram (CAPRA).

4.
J Biomol Tech ; 34(3)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37969875

RESUMO

The rapid assessment of microbiomes from ultra-low biomass environments such as cleanrooms or hospital operating rooms has a number of applications for human health and spacecraft manufacturing. Current techniques often employ lengthy protocols using short-read DNA sequencing technology to analyze amplified DNA and have the disadvantage of a longer analysis time and lack of portability. Here, we demonstrate a rapid (~24 hours) on-site nanopore-based sequencing approach to characterize the microbiome of a NASA Class 100K cleanroom where spacecraft components are assembled. This approach employs a modified protocol of Oxford Nanopore's Rapid PCR Barcoding Kit in combination with the recently developed Squeegee-Aspirator for Large Sampling Area (SALSA) surface sampling device. Results for these ultra-low biomass samples revealed DNA amplification ~1 to 2 orders of magnitude above process control samples and were dominated primarily by Paracoccus and Acinetobacter species. Negative control samples were collected to provide critical data on background contamination, including Cutibacerium acnes, which most likely originated from the sampling reagents-associated microbiome (kitome). Overall, these results provide data on a novel approach for rapid low-biomass DNA profiling using the SALSA sampler combined with modified nanopore sequencing. These data highlight the critical need for employing multiple negative controls, along with using DNA-free reagents and techniques, to enable a proper assessment of ultra-low biomass samples.


Assuntos
Microbiota , Sequenciamento por Nanoporos , Humanos , Biomassa , Microbiota/genética , Análise de Sequência de DNA/métodos , DNA , Indicadores e Reagentes , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Microbiol Resour Announc ; 12(10): e0038823, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754785

RESUMO

The draft genomes of five Naganishia strains were sequenced using MinION and annotated using Funannotate pipeline. Phylogenetic and genomic analyses were performed to provide their genetic relationships, diversity, and potential functional capabilities. This approach will aid in understanding their potential to survive under microgravity and their resilience to extreme environments.

6.
IMA Fungus ; 14(1): 15, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568226

RESUMO

During the construction and assembly of the Mars 2020 mission components at two different NASA cleanrooms, several fungal strains were isolated. Based on their colony morphology, two strains that showed yeast-like appearance were further characterized for their phylogenetic position. The species-level classification of these two novel strains, using traditional colony and cell morphology methods combined with the phylogenetic reconstructions using multi-locus sequence analysis (MLSA) based on several gene loci (ITS, LSU, SSU, RPB1, RPB2, CYTB and TEF1), and whole genome sequencing (WGS) was carried out. This polyphasic taxonomic approach supported the conclusion that the two basidiomycetous yeasts belong to hitherto undescribed species. The strain FJI-L2-BK-P3T, isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility, was placed in the Naganishia albida clade (Filobasidiales, Tremellomycetes), but is genetically and physiologically different from other members of the clade. Another yeast strain FKI-L6-BK-PAB1T, isolated from the Kennedy Space Center Payload Hazardous and Servicing Facility, was placed in the genus Cystobasidium (Cystobasidiales, Cystobasidiomycetes) and is distantly related to C. benthicum. Here we propose two novel species with the type strains, Naganishia kalamii sp. nov. (FJI-L2-BK-P3T = NRRL 64466 = DSM 115730) and Cystobasidium onofrii sp. nov. (FKI-L6-BK-PAB1T = NRRL 64426 = DSM 114625). The phylogenetic analyses revealed that single gene phylogenies (ITS or LSU) were not conclusive, and MLSA and WGS-based phylogenies were more advantageous for species discrimination in the two genera. The genomic analysis predicted proteins associated with dehydration and desiccation stress-response and the presence of genes that are directly related to osmotolerance and psychrotolerance in both novel yeasts described. Cells of these two newly-described yeasts were exposed to UV-C radiation and compared with N. onofrii, an extremophilic UV-C resistant cold-adapted Alpine yeast. Both novel species were UV resistant, emphasizing the need for collecting and characterizing extremotolerant microbes, including yeasts, to improve microbial reduction techniques used in NASA planetary protection programs.

7.
Cancer Med ; 12(5): 6365-6378, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281473

RESUMO

BACKGROUND: Bile duct brush specimens are difficult to interpret as they often present inflammatory and reactive backgrounds due to the local effects of stricture, atypical reactive changes, or previously installed stents, and often have low to intermediate cellularity. As a result, diagnosis of biliary adenocarcinomas is challenging and often results in large interobserver variability and low sensitivity OBJECTIVE: In this work, we used computational image analysis to evaluate the role of nuclear morphological and texture features of epithelial cell clusters to predict the presence of pancreatic and biliary tract adenocarcinoma on digitized brush cytology specimens. METHODS: Whole slide images from 124 patients, either diagnosed as benign or malignant based on clinicopathological correlation, were collected and randomly split into training (ST , N = 58) and testing (Sv , N = 66) sets, with the exception of cases diagnosed as atypical on cytology were included in Sv . Nuclear boundaries on cell clusters extracted from each image were segmented via a watershed algorithm. A total of 536 quantitative morphometric features pertaining to nuclear shape, size, and aggregate cluster texture were extracted from within the cell clusters. The most predictive features from patients in ST were selected via rank-sum, t-test, and minimum redundancy maximum relevance (mRMR) schemes. The selected features were then used to train three machine-learning classifiers. RESULTS: Malignant clusters tended to exhibit lower textural homogeneity within the nucleus, greater textural entropy around the nuclear membrane, and longer minor axis lengths. The sensitivity of cytology alone was 74% (without atypicals) and 46% (with atypicals). With machine diagnosis, the sensitivity improved to 68% from 46% when atypicals were included and treated as nonmalignant false negatives. The specificity of our model was 100% within the atypical category. CONCLUSION: We achieved an area under the receiver operating characteristic curve (AUC) of 0.79 on Sv , which included atypical cytological diagnosis.


Assuntos
Adenocarcinoma , Neoplasias dos Ductos Biliares , Humanos , Ductos Biliares/diagnóstico por imagem , Ductos Biliares/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Citodiagnóstico/métodos , Células Epiteliais/patologia , Curva ROC , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/patologia , Sensibilidade e Especificidade , Colangiopancreatografia Retrógrada Endoscópica
8.
NPJ Precis Oncol ; 6(1): 33, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661148

RESUMO

Despite known histological, biological, and clinical differences between lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), relatively little is known about the spatial differences in their corresponding immune contextures. Our study of over 1000 LUAD and LUSC tumors revealed that computationally derived patterns of tumor-infiltrating lymphocytes (TILs) on H&E images were different between LUAD (N = 421) and LUSC (N = 438), with TIL density being prognostic of overall survival in LUAD and spatial arrangement being more prognostically relevant in LUSC. In addition, the LUAD-specific TIL signature was associated with OS in an external validation set of 100 NSCLC treated with more than six different neoadjuvant chemotherapy regimens, and predictive of response to therapy in the clinical trial CA209-057 (n = 303). In LUAD, the prognostic TIL signature was primarily comprised of CD4+ T and CD8+ T cells, whereas in LUSC, the immune patterns were comprised of CD4+ T, CD8+ T, and CD20+ B cells. In both subtypes, prognostic TIL features were associated with transcriptomics-derived immune scores and biological pathways implicated in immune recognition, response, and evasion. Our results suggest the need for histologic subtype-specific TIL-based models for stratifying survival risk and predicting response to therapy. Our findings suggest that predictive models for response to therapy will need to account for the unique morphologic and molecular immune patterns as a function of histologic subtype of NSCLC.

9.
Clin Cancer Res ; 28(20): 4410-4424, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35727603

RESUMO

PURPOSE: The tumor-associated vasculature (TAV) differs from healthy blood vessels by its convolutedness, leakiness, and chaotic architecture, and these attributes facilitate the creation of a treatment-resistant tumor microenvironment. Measurable differences in these attributes might also help stratify patients by likely benefit of systemic therapy (e.g., chemotherapy). In this work, we present a new category of computational image-based biomarkers called quantitative tumor-associated vasculature (QuanTAV) features, and demonstrate their ability to predict response and survival across multiple cancer types, imaging modalities, and treatment regimens involving chemotherapy. EXPERIMENTAL DESIGN: We isolated tumor vasculature and extracted mathematical measurements of twistedness and organization from routine pretreatment radiology (CT or contrast-enhanced MRI) of a total of 558 patients, who received one of four first-line chemotherapy-based therapeutic intervention strategies for breast (n = 371) or non-small cell lung cancer (NSCLC, n = 187). RESULTS: Across four chemotherapy-based treatment strategies, classifiers of QuanTAV measurements significantly (P < 0.05) predicted response in held out testing cohorts alone (AUC = 0.63-0.71) and increased AUC by 0.06-0.12 when added to models of significant clinical variables alone. Similarly, we derived QuanTAV risk scores that were prognostic of recurrence-free survival in treatment cohorts who received surgery following chemotherapy for breast cancer [P = 0.0022; HR = 1.25; 95% confidence interval (CI), 1.08-1.44; concordance index (C-index) = 0.66] and chemoradiation for NSCLC (P = 0.039; HR = 1.28; 95% CI, 1.01-1.62; C-index = 0.66). From vessel-based risk scores, we further derived categorical QuanTAV high/low risk groups that were independently prognostic among all treatment groups, including patients with NSCLC who received chemotherapy only (P = 0.034; HR = 2.29; 95% CI, 1.07-4.94; C-index = 0.62). QuanTAV response and risk scores were independent of clinicopathologic risk factors and matched or exceeded models of clinical variables including posttreatment response. CONCLUSIONS: Across these domains, we observed an association of vascular morphology on CT and MRI-as captured by metrics of vessel curvature, torsion, and organizational heterogeneity-and treatment outcome. Our findings suggest the potential of shape and structure of the TAV in developing prognostic and predictive biomarkers for multiple cancers and different treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiorradioterapia/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tomografia Computadorizada por Raios X , Microambiente Tumoral
10.
Front Microbiol ; 13: 749396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633719

RESUMO

The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.

11.
JCO Clin Cancer Inform ; 6: e2100156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522898

RESUMO

PURPOSE: Allogenic hematopoietic stem-cell transplant (HCT) is a curative therapy for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Relapse post-HCT is the most common cause of treatment failure and is associated with a poor prognosis. Pathologist-based visual assessment of aspirate images and the manual myeloblast counting have shown to be predictive of relapse post-HCT. However, this approach is time-intensive and subjective. The premise of this study was to explore whether computer-extracted morphology and texture features from myeloblasts' chromatin patterns could help predict relapse and prognosticate relapse-free survival (RFS) after HCT. MATERIALS AND METHODS: In this study, Wright-Giemsa-stained post-HCT aspirate images were collected from 92 patients with AML/MDS who were randomly assigned into a training set (St = 52) and a validation set (Sv = 40). First, a deep learning-based model was developed to segment myeloblasts. A total of 214 texture and shape descriptors were then extracted from the segmented myeloblasts on aspirate slide images. A risk score on the basis of texture features of myeloblast chromatin patterns was generated by using the least absolute shrinkage and selection operator with a Cox regression model. RESULTS: The risk score was associated with RFS in St (hazard ratio = 2.38; 95% CI, 1.4 to 3.95; P = .0008) and Sv (hazard ratio = 1.57; 95% CI, 1.01 to 2.45; P = .044). We also demonstrate that this resulting signature was predictive of AML relapse with an area under the receiver operating characteristic curve of 0.71 within Sv. All the relevant code is available at GitHub. CONCLUSION: The texture features extracted from chromatin patterns of myeloblasts can predict post-HCT relapse and prognosticate RFS of patients with AML/MDS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Cromatina , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Aprendizado de Máquina , Síndromes Mielodisplásicas/terapia , Recidiva
12.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115363

RESUMO

BACKGROUND: We present a computational approach (ArcTIL) for quantitative characterization of the architecture of tumor-infiltrating lymphocytes (TILs) and their interplay with cancer cells from digitized H&E-stained histology whole slide images and evaluate its prognostic role in three different gynecological cancer (GC) types and across three different treatment types (platinum, radiation and immunotherapy). METHODS: In this retrospective study, we included 926 patients with GC diagnosed with ovarian cancer (OC), cervical cancer, and endometrial cancer with available digitized diagnostic histology slides and survival outcome information. ArcTIL features quantifying architecture and spatial interplay between immune cells and the rest of nucleated cells (mostly comprised cancer cells) were extracted from the cell cluster graphs of nuclei within the tumor epithelial nests, surrounding stroma and invasive tumor front compartments on H&E-stained slides. A Cox proportional hazards model, incorporating ArcTIL features was fit on the OC training cohort (N=51), yielding an ArcTIL signature. A unique threshold learned from the training set stratified the patients into a low and high-risk group. RESULTS: The seven feature ArcTIL classifier was found to significantly correlate with overall survival in chemotherapy and radiotherapy-treated validation cohorts and progression-free survival in an immunotherapy-treated validation cohort. ArcTIL features relating to increased density of TILs in the epithelium and invasive tumor front were found to be associated with better survival outcomes when compared with those patients with an increased TIL density in the stroma. A statistically significant association was found between the ArcTIL signature and signaling pathways for blood vessel morphogenesis, vasculature development, regulation of cell differentiation, cell-substrate adhesion, biological adhesion, regulation of vasculature development, and angiogenesis. CONCLUSIONS: This study reveals that computationally-derived features from the spatial architecture of TILs and tumor cells are prognostic in GCs treated with chemotherapy, radiotherapy, and checkpoint blockade and are closely associated with central biological processes that impact tumor progression. These findings could aid in identifying therapy-refractory patients and further enable personalized treatment decision-making.


Assuntos
Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Neoplasias dos Genitais Femininos/diagnóstico por imagem , Neoplasias dos Genitais Femininos/terapia , Imunoterapia/métodos , Idoso , Feminino , Neoplasias dos Genitais Femininos/mortalidade , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Microambiente Tumoral
13.
Cancer Res ; 82(2): 334-345, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34853071

RESUMO

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/epidemiologia , Idoso , Biópsia com Agulha de Grande Calibre , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Medição de Risco , Coloração e Rotulagem
14.
Extremophiles ; 25(5-6): 437-458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586500

RESUMO

One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.


Assuntos
Marte , Planetas , Regiões Antárticas , Exobiologia , Meio Ambiente Extraterreno , Ambientes Extremos
15.
Eur Urol Focus ; 7(4): 722-732, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33941504

RESUMO

BACKGROUND: The presence of invasive cribriform adenocarcinoma (ICC), an expanse of cells containing punched-out lumina uninterrupted by stroma, in radical prostatectomy (RP) specimens has been associated with biochemical recurrence (BCR). However, ICC identification has only moderate inter-reviewer agreement. OBJECTIVE: To investigate quantitative machine-based assessment of the extent and prognostic utility of ICC, especially within individual Gleason grade groups. DESIGN, SETTING, AND PARTICIPANTS: A machine learning approach was developed for ICC segmentation using 70 RP patients and validated in a cohort of 749 patients from four sites whose median year of surgery was 2007 and with median follow-up of 28 mo. ICC was segmented on one representative hematoxylin and eosin RP slide per patient and the fraction of tumor area composed of ICC, the cribriform area index (CAI), was measured. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The association between CAI and BCR was measured in terms of the concordance index (c index) and hazard ratio (HR). RESULTS AND LIMITATIONS: CAI was correlated with BCR (c index 0.62) in the validation set of 411 patients with ICC morphology, especially those with Gleason grade group 2 cancer (n = 192; c index 0.66), and was less prognostic when patients without ICC were included (c index 0.54). A doubling of CAI in the group with ICC morphology was prognostic after controlling for Gleason grade, surgical margin positivity, preoperative prostate-specific antigen level, pathological T stage, and age (HR 1.19, 95% confidence interval 1.03-1.38; p = 0.018). CONCLUSIONS: Automated image analysis and machine learning could provide an objective, quantitative, reproducible, and high-throughput method of quantifying ICC area. The performance of CAI for grade group 2 cancer suggests that for patients with little Gleason 4 pattern, the ICC fraction has a strong prognostic role. PATIENT SUMMARY: Machine-based measurement of a specific cell pattern (cribriform; sieve-like, with lots of spaces) in images of prostate specimens could improve risk stratification for patients with prostate cancer. In the future, this could help in expanding the criteria for active surveillance.


Assuntos
Próstata , Neoplasias da Próstata , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Masculino , Recidiva Local de Neoplasia/patologia , Prognóstico , Próstata/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
16.
NPJ Precis Oncol ; 5(1): 35, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941830

RESUMO

Existing tools for post-radical prostatectomy (RP) prostate cancer biochemical recurrence (BCR) prognosis rely on human pathologist-derived parameters such as tumor grade, with the resulting inter-reviewer variability. Genomic companion diagnostic tests such as Decipher tend to be tissue destructive, expensive, and not routinely available in most centers. We present a tissue non-destructive method for automated BCR prognosis, termed "Histotyping", that employs computational image analysis of morphologic patterns of prostate tissue from a single, routinely acquired hematoxylin and eosin slide. Patients from two institutions (n = 214) were used to train Histotyping for identifying high-risk patients based on six features of glandular morphology extracted from RP specimens. Histotyping was validated for post-RP BCR prognosis on a separate set of n = 675 patients from five institutions and compared against Decipher on n = 167 patients. Histotyping was prognostic of BCR in the validation set (p < 0.001, univariable hazard ratio [HR] = 2.83, 95% confidence interval [CI]: 2.03-3.93, concordance index [c-index] = 0.68, median years-to-BCR: 1.7). Histotyping was also prognostic in clinically stratified subsets, such as patients with Gleason grade group 3 (HR = 4.09) and negative surgical margins (HR = 3.26). Histotyping was prognostic independent of grade group, margin status, pathological stage, and preoperative prostate-specific antigen (PSA) (multivariable p < 0.001, HR = 2.09, 95% CI: 1.40-3.10, n = 648). The combination of Histotyping, grade group, and preoperative PSA outperformed Decipher (c-index = 0.75 vs. 0.70, n = 167). These results suggest that a prognostic classifier for prostate cancer based on digital images could serve as an alternative or complement to molecular-based companion diagnostic tests.

17.
Med Image Anal ; 68: 101903, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352373

RESUMO

Local spatial arrangement of nuclei in histopathology images of different cancer subtypes has been shown to have prognostic value. In order to capture localized nuclear architectural information, local cell cluster graph-based measurements have been proposed. However, conventional ways of cell graph construction only utilize nuclear spatial proximity, and do not differentiate between different cell types while constructing the graph. In this paper, we present feature-driven local cell cluster graph (FLocK), a new approach to constructing local cell graphs by simultaneously considering spatial proximity and attributes of the individual nuclei (e.g. shape, size, texture). In addition, we have designed a new set of quantitative graph-derived metrics to be extracted from FLocKs, in turn capturing the interplay between different proximally located clusters of nuclei. We have evaluated the efficacy of FLocK features extracted from H&E stained tissue images in two clinical applications: to classify short-term vs. long-term survival among patients of early stage non-small cell lung cancer (ES-NSCLC), and also to predict human papillomavirus (HPV) status of oropharyngeal squamous cell carcinoma (OP-SCCs). In the classification of long-term vs. short-term survival among patients of ES-NSCLC (training cohort, n = 434), the top 10 discriminative FLocK features related to the variation of FLocK size and intersected FLocK distance were identified, via Minimum Redundancy and Maximum Relevance (MRMR) selection, in 100 runs of 10-fold cross-validation, and in conjunction with a linear discriminant classifier yielded a mean AUC of 0.68 for predicting survival in the training cohort. This is better than other state-of-art histomorphometric and deep learning classifiers (cell cluster graphs (AUC = 0.62), global cell graph (AUC = 0.56), nuclear shape (AUC = 0.54), nuclear orientation (AUC = 0.61), AlexNet (AUC = 0.55), ResNet (AUC = 0.56)). The FLocK-based classifier yielded an AUC of 0.70 in an independent testing cohort (n = 150). The patients identified as "high-risk" had significantly poorer overall survival in the testing cohort, with a hazard ratio (95% confidence interval) of 2.24 (1.24-4.05), p = 0.01144). In the classification of HPV status of OP-SCC, the top three FLocK features pertaining to the portion of intersected FLocKs were used to construct a classifier, which yielded an AUC of 0.80 in the training cohort (n = 50), and an accuracy of 0.78 in an independent testing cohort (n = 35). The combination of FLocK measurements with cell cluster graphs, nuclear orientation, and nuclear shape improved the training AUC to 0.87, 0.91 and 0.85, respectively. Deep learning approaches yielded marginally better performance than the FLocK-based classifier in this application, with AUC = 0.78 for AlexNet, AUC = 0.81 for ResNet, and AUC = 0.76 for FLocK-based classifier in the testing cohort. However, the combination of two hand-crafted features: FLocK and nuclear orientation yielded a better performance (AUC = 0.84). FLocK provides a unique and quantitative way to analyze histology images of solid tumors and interrogate tumor morphology from a different aspect than existing histomorphometrics. The source code can be accessed at https://github.com/hacylu/FLocK.


Assuntos
Alphapapillomavirus , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Orofaríngeas/diagnóstico por imagem , Papillomaviridae , Infecções por Papillomavirus/diagnóstico por imagem , Prognóstico
18.
EBioMedicine ; 63: 103163, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33321450

RESUMO

BACKGROUND: We developed and validated an integrated radiomic-clinicopathologic nomogram (RadClip) for post-surgical biochemical recurrence free survival (bRFS) and adverse pathology (AP) prediction in men with prostate cancer (PCa). RadClip was further compared against extant prognostics tools like CAPRA and Decipher. METHODS: A retrospective study of 198 patients with PCa from four institutions who underwent pre-operative 3 Tesla MRI followed by radical prostatectomy, between 2009 and 2017 with a median 35-month follow-up was performed. Radiomic features were extracted from prostate cancer regions on bi-parametric magnetic resonance imaging (bpMRI). Cox Proportional-Hazards (CPH) model warped with minimum redundancy maximum relevance (MRMR) feature selection was employed to select bpMRI radiomic features for bRFS prediction in the training set (D1, N = 71). In addition, a bpMRI radiomic risk score (RadS) and associated nomogram, RadClip, were constructed in D1 and then compared against the Decipher, pre-operative (CAPRA), and post-operative (CAPRA-S) nomograms for bRFS and AP prediction in the testing set (D2, N = 127). FINDINGS: "RadClip yielded a higher C-index (0.77, 95% CI 0.65-0.88) compared to CAPRA (0.68, 95% CI 0.57-0.8) and Decipher (0.51, 95% CI 0.33-0.69) and was found to be comparable to CAPRA-S (0.75, 95% CI 0.65-0.85). RadClip resulted in a higher AUC (0.71, 95% CI 0.62-0.81) for predicting AP compared to Decipher (0.66, 95% CI 0.56-0.77) and CAPRA (0.69, 95% CI 0.59-0.79)." INTERPRETATION: RadClip was more prognostic of bRFS and AP compared to Decipher and CAPRA. It could help pre-operatively identify PCa patients at low risk of biochemical recurrence and AP and who therefore might defer additional therapy. FUNDING: The National Institutes of Health, the U.S. Department of Veterans Affairs, and the Department of Defense.


Assuntos
Diagnóstico por Imagem , Assistência Perioperatória , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/mortalidade , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Tomada de Decisão Clínica , Diagnóstico por Imagem/métodos , Gerenciamento Clínico , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Nomogramas , Seleção de Pacientes , Prognóstico , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Fluxo de Trabalho
19.
Eur Radiol ; 31(3): 1336-1346, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32876839

RESUMO

OBJECTIVES: To explore the associations between T1 and T2 magnetic resonance fingerprinting (MRF) measurements and corresponding tissue compartment ratios (TCRs) on whole mount histopathology of prostate cancer (PCa) and prostatitis. MATERIALS AND METHODS: A retrospective, IRB-approved, HIPAA-compliant cohort consisting of 14 PCa patients who underwent 3 T multiparametric MRI along with T1 and T2 MRF maps prior to radical prostatectomy was used. Correspondences between whole mount specimens and MRI and MRF were manually established. Prostatitis, PCa, and normal peripheral zone (PZ) regions of interest (ROIs) on pathology were segmented for TCRs of epithelium, lumen, and stroma using two U-net deep learning models. Corresponding ROIs were mapped to T2-weighted MRI (T2w), apparent diffusion coefficient (ADC), and T1 and T2 MRF maps. Their correlations with TCRs were computed using Pearson's correlation coefficient (R). Statistically significant differences in means were assessed using one-way ANOVA. RESULTS: Statistically significant differences (p < 0.01) in means of TCRs and T1 and T2 MRF were observed between PCa, prostatitis, and normal PZ. A negative correlation was observed between T1 and T2 MRF and epithelium (R = - 0.38, - 0.44, p < 0.05) of PCa. T1 MRF was correlated in opposite directions with stroma of PCa and prostatitis (R = 0.35, - 0.44, p < 0.05). T2 MRF was positively correlated with lumen of PCa and prostatitis (R = 0.57, 0.46, p < 0.01). Mean T2 MRF showed significant differences (p < 0.01) between PCa and prostatitis across both transition zone (TZ) and PZ, while mean T1 MRF was significant (p = 0.02) in TZ. CONCLUSION: Significant associations between MRF (T1 in the TZ and T2 in the PZ) and tissue compartments on corresponding histopathology were observed. KEY POINTS: • Mean T2 MRF measurements and ADC within cancerous regions of interest dropped with increasing ISUP prognostic groups (IPG). • Mean T1 and T2 MRF measurements were significantly different (p < 0.001) across IPGs, prostatitis, and normal peripheral zone (NPZ). • T2 MRF showed stronger correlations in the peripheral zone, while T1 MRF showed stronger correlations in the transition zone with histopathology for prostate cancer.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Prostatite , Imagem de Difusão por Ressonância Magnética , Epitélio , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Prostatite/diagnóstico por imagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA