Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 903970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686462

RESUMO

Several insults can lead to acute kidney injury (AKI) in native kidney and transplant patients, with diabetes critically contributing as pivotal risk factor. High glucose per se can disrupt several signaling pathways within the kidney that, if not restored, can favor the instauration of mechanisms of maladaptive repair, altering kidney homeostasis and proper function. Diabetic kidneys frequently show reduced oxygenation, vascular damage and enhanced inflammatory response, features that increase the kidney vulnerability to hypoxia. Importantly, epidemiologic data shows that previous episodes of AKI increase susceptibility to diabetic kidney disease (DKD), and that patients with DKD and history of AKI have a generally worse prognosis compared to DKD patients without AKI; it is therefore crucial to monitor diabetic patients for AKI. In the present review, we will describe the causes that contribute to increased susceptibility to AKI in diabetes, with focus on the molecular mechanisms that occur during hyperglycemia and how these mechanisms expose the different types of resident renal cells to be more vulnerable to maladaptive repair during AKI (contrast- and drug-induced AKI). Finally, we will review the list of the existing candidate biomarkers of diagnosis and prognosis of AKI in patients with diabetes.


Assuntos
Injúria Renal Aguda , Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Humanos , Injúria Renal Aguda/etiologia , Rim/metabolismo , Fatores de Risco , Hiperglicemia/complicações , Diabetes Mellitus/epidemiologia
2.
Aging (Albany NY) ; 13(6): 8026-8039, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758105

RESUMO

CVD remains the major cause of mortality with graft functioning in Kidney transplant recipients (KTRs), with an estimated risk of CV events about 50-fold higher than in the general population. Many strategies have been considered to reduce the CV risk such as the use of mTOR inhibitors. We evaluate whether chronic mTOR inhibition might influence CV aging in KTRs studying the molecular mechanisms involved in this effect. We retrospectively analyzed 210 KTRs with stable graft function on therapy with CNI and mycophenolic acid (Group A, 105 pts.), or with CNI and mTORi (Everolimus, Group B, 105 pts.). The presence of mTOR inhibitor in immunosuppressive therapy was associated to increase serum levels of Klotho with concomitant reduction in FGF-23, with a significant decrease in left ventricular mass. In addition, KTRs with mTORi improved mitochondrial function/biogenesis in PBMC with more efficient oxidative phosphorylation, antioxidant capacity and glutathione peroxidase activity. Finally, group B KTRs presented reduced levels of inflammaging markers such as reduced serum pentraxin-3 and p21ink expression in PBMC. In conclusion, we demonstrated that mTOR inhibition in immunosuppressive protocols prevents the occurrence and signs of CV aging in KTRs.


Assuntos
Everolimo/farmacologia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/farmacologia , Transplante de Rim , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transplantados , Adulto , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Everolimo/uso terapêutico , Feminino , Fator de Crescimento de Fibroblastos 23 , Rejeição de Enxerto/metabolismo , Humanos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Biogênese de Organelas
3.
Nutrients ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477671

RESUMO

Access to renal transplantation guarantees a substantial improvement in the clinical condition and quality of life (QoL) for end-stage renal disease (ESRD) patients. In recent years, a greater number of older patients starting renal replacement therapies (RRT) have shown the long-term impact of conservative therapies for advanced CKD and the consequences of the uremic milieu, with a frail clinical condition that impacts not only their survival but also limits their access to transplantation. This process, referred to as "inflammaging," might be reversible with a tailored approach, such as RRT accompanied by specific nutritional support. In this review, we summarize the evidence demonstrating the presence of several proinflammatory substances in the Western diet (WD) and the positive effect of unprocessed food consumption and increased fruit and vegetable intake, suggesting a new approach to reduce inflammaging with the improvement of ESRD clinical status. We conclude that the Mediterranean diet (MD), because of its modulative effects on microbiota and its anti-inflammaging properties, may be a cornerstone in a more precise nutritional support for patients on the waiting list for kidney transplantation.


Assuntos
Inflamação/etiologia , Inflamação/terapia , Transplante de Rim , Terapia Nutricional/métodos , Insuficiência Renal Crônica/terapia , Terapia de Substituição Renal/efeitos adversos , Adulto , Idoso , Dieta Mediterrânea , Dieta Ocidental/efeitos adversos , Feminino , Frutas , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação/prevenção & controle , Falência Renal Crônica/terapia , Masculino , Qualidade de Vida , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/microbiologia , Verduras
4.
Gen Comp Endocrinol ; 301: 113663, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220301

RESUMO

Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System, is a pluripotent humoral agent whose biological actions include short-term modulations and long-term adaptations. In fish, short-term cardio-tropic effects of AngII are documented, but information on the role of AngII in long-term cardiac remodelling is not fully understood. Here, we describe a direct approach to disclose long-term morpho-functional effects of AngII on the zebrafish heart. Adult fish exposed to waterborne teleost analogue AngII for 8 weeks showed enhanced heart weight and cardio-somatic index, coupled to myocardial structural changes (i.e. augmented compacta thickness and fibrosis), and increased heart rate. These findings were paralleled by an up-regulation of type-1 and type-2 AngII receptors expression, and by changes in the expression of GATA binding protein 4, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 and superoxide dismutase 1 soluble mRNAs, as well as of cytochrome b-245 beta polypeptide protein, indicative of cardiac remodelling. Our results suggest that waterborne AngII can sustain and robustly affect the cardiac morpho-functional remodelling of adult zebrafish.


Assuntos
Peixe-Zebra , Angiotensina II , Animais , Coração , Miocárdio/metabolismo , Sistema Renina-Angiotensina
5.
Environ Pollut ; 269: 116177, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33290955

RESUMO

Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 µM and 25 µM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.


Assuntos
Compostos Benzidrílicos , Carpa Dourada , Animais , Compostos Benzidrílicos/toxicidade , Coração , Fenóis/toxicidade
6.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824988

RESUMO

Glomerulonephritis (GN) continues to be one of the main causes of end-stage kidney disease (ESKD) with an incidence rating from 10.5% to 38.2%. Therefore, recurrent GN, previously considered to be a minor contributor to graft loss, is the third most common cause of graft failure 10 years after renal transplantation. However, the incidence, pathogenesis, and natural course of recurrences are still not completely understood. This review focuses on the most frequent diseases that recur after renal transplantation, analyzing rate of recurrence, epidemiology and risk factors, pathogenesis and bimolecular mechanisms, clinical presentation, diagnosis, and therapy, taking into consideration the limited data available in the literature. First of all, the risk for recurrence depends on the type of glomerulonephritis. For example, recipient patients with anti-glomerular basement membrane (GBM) disease present recurrence rarely, but often exhibit rapid graft loss. On the other hand, recipient patients with C3 glomerulonephritis present recurrence in more than 50% of cases, although the disease is generally slowly progressive. It should not be forgotten that every condition that can lead to chronic graft dysfunction should be considered in the differential diagnosis of recurrence. Therefore, a complete workup of renal biopsy, including light, immunofluorescence and electron microscopy study, is essential to provide the diagnosis, excluding alternative diagnosis that may require different treatment. We will examine in detail the biomolecular mechanisms of both native and transplanted kidney diseases, monitoring the risk of recurrence and optimizing the available treatment options.


Assuntos
Glomerulonefrite por IGA/patologia , Glomerulonefrite Membranosa/patologia , Glomerulonefrite/patologia , Síndrome Hemolítico-Urêmica/patologia , Transplante de Rim/efeitos adversos , Complicações Pós-Operatórias/patologia , Glomerulonefrite/epidemiologia , Glomerulonefrite/etiologia , Glomerulonefrite por IGA/epidemiologia , Glomerulonefrite por IGA/etiologia , Glomerulonefrite Membranosa/epidemiologia , Glomerulonefrite Membranosa/etiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/etiologia , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Recidiva
7.
Antioxidants (Basel) ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604810

RESUMO

The extraordinary capacity of the goldfish (Carassius auratus) to increase its cardiac performance under acute hypoxia is crucial in ensuring adequate oxygen supply to tissues and organs. However, the underlying physiological mechanisms are not yet completely elucidated. By employing an ex vivo working heart preparation, we observed that the time-dependent enhancement of contractility, distinctive of the hypoxic goldfish heart, is abolished by the Nitric Oxide Synthase (NOS) antagonist L-NMMA, the Nitric Oxide (NO) scavenger PTIO, as well as by the PI3-kinase (PI3-K) and sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) pumps' inhibition by Wortmannin and Thapsigargin, respectively. In goldfish hearts exposed to hypoxia, an ELISA test revealed no changes in cGMP levels, while Western Blotting analysis showed an enhanced expression of the phosphorylated protein kinase B (pAkt) and of the NADPH oxidase catalytic subunit Nox2 (gp91phox). A significant decrease of protein S-nitrosylation was observed by Biotin Switch assay in hypoxic hearts. Results suggest a role for a PI3-K/Akt-mediated activation of the NOS-dependent NO production, and SERCA2a pumps in the mechanisms conferring benefits to the goldfish heart under hypoxia. They also propose protein denitrosylation, and the possibility of nitration, as parallel intracellular events.

8.
Sci Rep ; 9(1): 18953, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831848

RESUMO

The exceptional hypoxia tolerance of the goldfish heart may be achieved through the activation of an alternative mechanism recruiting the first product of the anaerobic glycolysis (i.e. piruvate). This hypothesis led to design a classical mass spectrometry based proteomic study to identify in the goldfish cardiac proteins that may be associated with maintaining heart function under normoxia and hypoxia. A selective protein solubilization, SDS PAGE, trypsin digestion and MALDI MS/MS analysis allowed the identification of the 12 most stable hypoxia-regulated proteins. Among these proteins, five are enzymes catalyzing reversible steps of the glycolysis/gluconeogenesis network. Protein composition reveals the presence of fructose-1,6-bisphosphate aldolase B as a specific hypoxia-regulated protein. This work indicated that the key enzyme of reversible steps of the glycolysis/gluconeogenesis network is fructose-1,6-bisphosphate, aldolase B, suggesting a role of gluconeogenesis in the mechanisms involved in the goldfish heart response to hypoxia.


Assuntos
Proteínas de Peixes/metabolismo , Carpa Dourada/metabolismo , Hipóxia/metabolismo , Miocárdio/metabolismo , Proteômica , Animais , Eletroforese em Gel de Poliacrilamida , Gluconeogênese , Glicólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
J Exp Biol ; 222(Pt 19)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527180

RESUMO

The goldfish (Carassius auratus) exhibits a remarkable capacity to survive and remain active under prolonged and severe hypoxia, making it a good model for studying cardiac function when oxygen availability is a limiting factor. Under hypoxia, the goldfish heart increases its performance, representing a putative component of hypoxia tolerance; however, the underlying mechanisms have not yet been elucidated. Here, we aimed to investigate the role of ß3-adrenoreceptors (ARs) in the mechanisms that modulate goldfish heart performance along with the impact of oxygen levels. By western blotting analysis, we found that the goldfish heart expresses ß3-ARs, and this expression increases under hypoxia. The effects of ß3-AR stimulation were analysed by using an ex vivo working heart preparation. Under normoxia, the ß3-AR-selective agonist BRL37344 (10-12 to 10-7 mol l-1) elicited a concentration-dependent increase of contractility that was abolished by a specific ß3-AR antagonist (SR59230A; 10-8 mol l-1), but not by α/ß1/ß2-AR inhibitors (phentolamine, nadolol and ICI118,551; 10-7 mol l-1). Under acute hypoxia, BRL37344 did not affect goldfish heart performance. However, SR59230A, but not phentolamine, nadolol or ICI118,551, abolished the time-dependent enhancement of contractility that characterizes the hypoxic goldfish heart. Under both normoxia and hypoxia, adenylate cyclase and cAMP were found to be involved in the ß3-AR-dependent downstream transduction pathway. In summary, we show the presence of functional ß3-ARs in the goldfish heart, whose activation modulates basal performance and contributes to a hypoxia-dependent increase of contractility.


Assuntos
Carpa Dourada/fisiologia , Coração/fisiopatologia , Hipóxia/fisiopatologia , Receptores Adrenérgicos beta 3/metabolismo , Adenilil Ciclases/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , AMP Cíclico/metabolismo , Feminino , Coração/efeitos dos fármacos , Masculino , Contração Miocárdica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Volume Sistólico/fisiologia
10.
J Exp Biol ; 222(Pt 11)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31085597

RESUMO

Selenoprotein T (SELENOT) is a thioredoxin-like protein, which mediates oxidoreductase functions via its redox active motif Cys-X-X-Sec. In mammals, SELENOT is expressed during ontogenesis and progressively decreases in adult tissues. In the heart, it is re-expressed after ischemia and induces cardioprotection against ischemia-reperfusion (IR) injury. SELENOT is present in teleost fish, including the goldfish Carassius auratus This study aimed to evaluate the cardiac expression of SELENOT, and the effects of exogenous PSELT (a 43-52 SELENOT-derived peptide) on the heart function of C. auratus, a hypoxia tolerance fish model. We found that SELENOT was expressed in cardiac extracts of juvenile and adult fish, located in the sarcoplasmic reticulum (SR) together with calsequestrin-2. Expression increased under acute hypoxia. On ex vivo isolated and perfused goldfish heart preparations, under normoxia, PSELT dose dependently increased stroke volume (VS), cardiac output [Formula: see text] and stroke work (SW), involving cAMP, PKA, L-type calcium channels, SERCA2a pumps and pAkt. Under hypoxia, PSELT did not affect myocardial contractility. Only at higher concentrations (10-8 to 10-7 mol l-1) was an increase of VS and [Formula: see text] observed. It also reduced the cardiac expression of 3-NT, a tissue marker of nitrosative stress, which increases under low oxygen availability. These data are the first to propose SELENOT 43-52 (PSELT) as a cardiac modulator in fish, with a potential protective role under hypoxia.


Assuntos
Coração/fisiologia , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia , Animais , Débito Cardíaco/efeitos dos fármacos , Retículo Endoplasmático , Feminino , Proteínas de Peixes/metabolismo , Carpa Dourada , Coração/efeitos dos fármacos , Hipóxia/fisiopatologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA