Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin J Physiol ; 65(6): 277-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588353

RESUMO

Ca2+-sensing receptors (CaSRs) are G protein-coupled receptors activated by elevated concentrations of extracellular Ca2+. In our previous works, we showed protein and functional expression of CaSR in mouse cerebral endothelial cell (EC) (bEND.3); the CaSR response (high Ca2+-elicited cytosolic [Ca2+] elevation) was unaffected by suppression of phospholipase C but in part involved Ca2+ influx through transient receptor potential V1 (TRPV1) channels. In this work, we investigated if extracellular acidity affected CaSR-mediated Ca2+ influx triggered by high (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 mM cinacalcet (positive allosteric modulator of CaSR). Extracellular acidosis (pH 6.8 and pH 6.0) strongly suppressed cytosolic [Ca2+] elevation triggered by high Ca2+, spermine, and cinacalcet; acidosis also inhibited Mn2+ influx stimulated by high Ca2+ and cinacalcet. Purinoceptor-triggered Ca2+ response, however, was not suppressed by acidosis. Extracellular acidity also did not affect membrane potential, suggesting suppressed CaSR-mediated Ca2+ influx in acidity did not result from the reduced electrical driving force for Ca2+. Our results suggest Ca2+ influx through a putative CaSR-TRP complex in bEND.3 EC was sensitive to extracellular pH.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Camundongos , Animais , Células Endoteliais/metabolismo , Cinacalcete/farmacologia , Cinacalcete/metabolismo , Espermina/farmacologia , Espermina/metabolismo , Potenciais da Membrana , Cálcio/metabolismo
2.
Chin J Physiol ; 64(2): 80-87, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938818

RESUMO

Ca2+-sensing receptors (CaSR), activated by elevated concentrations of extracellular Ca2+, have been known to regulate functions of thyroid cells, neurons, and endothelial cells (EC). In this report, we studied CaSR-mediated Ca2+ influx in mouse cerebral microvascular EC (bEND.3 cells). Cytosolic free Ca2+ concentration and Mn2+ influx were measured by fura-2 microfluorometry. High (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 µM cinacalcet (positive allosteric modulator of CaSR) all triggered Ca2+ influx; however, spermine, unlike high Ca2+ and cinacalcet, did not promote Mn2+ influx and its response was poorly sensitive to SKF 96365, a TRP channel blocker. Consistently, 2-aminoethoxydiphenyl borate and ruthenium red (two other general TRP channel blockers) suppressed Ca2+ influx triggered by cinacalcet and high Ca2+ but not by spermine. Ca2+ influx triggered by high Ca2+, spermine, and cinacalcet was similarly suppressed by A784168, a potent and selective TRPV1 antagonist. Our results suggest that CaSR activation triggered Ca2+ influx via TRPV1 channels; intriguingly, pharmacological, and permeability properties of such Ca2+ influx depended on the stimulating ligands.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Camundongos , Receptores de Detecção de Cálcio/metabolismo
3.
Biochem Biophys Res Commun ; 526(1): 117-121, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32197839

RESUMO

Tannic acid (TA) is a polyphenol compound present in wines and many beverages. Although previous works have shown that TA could cause vasodilation in an endothelial cell (EC)-dependent manner, there is hitherto no report showing whether TA could raise EC cytosolic Ca2+ concentration. In this work we examined the effects of TA on cytosolic Ca2+ of mouse brain bEND.3 EC. TA (1-30 µM) caused a slow elevation in cytosolic Ca2+ level in a concentration-dependent manner. At 30 µM, TA triggered Ca2+ influx without causing intracellular Ca2+ release. TA-triggered Ca2+ influx was suppressed by Ni2+ (a non-specific Ca2+ channel blocker), ruthenium red and SKF 96365 (non-specific TRP channel blockers), CBA (a selective TRPM4 inhibitor) and M 084 (a selective TRPC4/C5 blocker). However, TA-triggered Ca2+ influx pathway was not permeable to Mn2+. Our results suggest TA activated TRP channels, possibly TRPM4 and TRPC4/C5, to promote influx of Ca2+.


Assuntos
Bebidas/análise , Cálcio/metabolismo , Células Endoteliais/metabolismo , Taninos/análise , Canais de Potencial de Receptor Transitório/metabolismo , Vasodilatadores/análise , Vinho/análise , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imidazóis/farmacologia , Manganês/metabolismo , Camundongos , Níquel/toxicidade , Rutênio Vermelho/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
4.
Fundam Clin Pharmacol ; 33(1): 52-62, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29974515

RESUMO

A pathological feature in atherosclerosis is the dysfunction and death of vascular endothelial cells (EC). Oxidized low-density lipoprotein (LDL), known to accumulate in the atherosclerotic arterial walls, impairs endothelium-dependent relaxation and causes EC apoptosis. A major bioactive ingredient of the oxidized LDL is lysophosphatidylcholine (LPC), which at higher concentrations causes apoptosis and necrosis in various EC. There is hitherto no report on LPC-induced cytotoxicity in brain EC. In this work, we found that LPC caused cytosolic Ca2+ overload, mitochondrial membrane potential decrease, p38 activation, caspase 3 activation and eventually apoptotic death in mouse cerebral bEND.3 EC. In contrast to reported reactive oxygen species (ROS) generation by LPC in other EC, LPC did not trigger ROS formation in bEND.3 cells. Pharmacological inhibition of p38 alleviated LPC-inflicted cell death. We examined whether heparin could be cytoprotective: although it could not suppress LPC-triggered Ca2+ signal, p38 activation and mitochondrial membrane potential drop, it did suppress LPC-induced caspase 3 activation and alleviate LPC-inflicted cytotoxicity. Our data suggest LPC apoptotic death mechanisms in bEND.3 might involve mitochondrial membrane potential decrease and p38 activation. Heparin is protective against LPC cytotoxicity and might intervene steps between mitochondrial membrane potential drop/p38 activation and caspase 3 activation.


Assuntos
Aterosclerose/prevenção & controle , Encéfalo/patologia , Heparina/farmacologia , Lisofosfatidilcolinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/patologia , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Caspase 3/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Lipoproteínas LDL/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Fundam Clin Pharmacol ; 32(5): 499-506, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29752814

RESUMO

Valproic acid (VA) is currently used to treat epilepsy and bipolar disorder. It has also been demonstrated to promote neuroprotection and neurogenesis. Although beneficial actions of VA on brain blood vessels have also been demonstrated, the effects of VA on brain endothelial cell (EC) Ca2+ signaling are hitherto unreported. In this report, we examined the effects of VA on agonist-triggered Ca2+ signaling in mouse cortical bEND.3 EC. While VA (100 µm) did not cause an acute inhibition of ATP-triggered Ca2+ signaling, a 30-min VA treatment strongly suppressed ATP-triggered intracellular Ca2+ release; however, such treatment did not affect Ca2+ release triggered by cyclopiazonic acid, an inhibitor of SERCA Ca2+ pump, suggesting there was no reduction in Ca2+ store size. VA-activated p38 signaling, and VA-induced inhibition of ATP-triggered Ca2+ release was prevented by SB203580, a p38 inhibitor, suggesting VA caused the inhibition by activating p38. Remarkably, VA treatment did not affect acetylcholine-triggered Ca2+ release, suggesting VA may not inhibit inositol 1,4,5-trisphosphate-induced Ca2+ release per se, and may not act directly on Gq or phospholipase C. Taken together, our results suggest VA treatment, via a p38-dependent mechanism, led to an inhibition of purinergic receptor-effector coupling.


Assuntos
Anticonvulsivantes/farmacologia , Canais de Cálcio/efeitos dos fármacos , Ácido Valproico/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Physiol Sci ; 68(1): 33-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27873157

RESUMO

Eicosapentaenoic acid (EPA), an omega-3 fatty acid abundant in fish oil, protects endothelial cells (EC) from lipotoxicity and triggers EC NO release. The latter is related to an elevation of cytosolic Ca2+. Although EPA has been shown to cause human EC cytosolic Ca2+ elevation, the mechanism is unclear. Microfluorimetric imaging was used here to measure free cytosolic Ca2+ concentration. EPA was shown to cause intracellular Ca2+ release in mouse cerebral cortex endothelial bEND.3 cells; interestingly, the EPA-sensitive intracellular Ca2+ pool(s) appeared to encompass and was larger than the Ca2+ pool mobilized by sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibition by cyclopiazonic acid. EPA also opened a Ca2+ influx pathway pharmacologically distinct from store-operated Ca2+ influx. Surprisingly, EPA-triggered Ca2+ influx was Ni2+-insensitive; and EPA did not trigger Mn2+ influx. Further, EPA-triggered Ca2+ influx did not involve Na+-Ca2+ exchangers. Thus, our results suggest EPA triggered unusual mechanisms of Ca2+ release and Ca2+ influx in EC.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Córtex Cerebral/metabolismo , Células Endoteliais/metabolismo , Indóis/farmacologia , Transporte de Íons/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA