Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(40): 13914-13926, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32796031

RESUMO

Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. Here we investigate the biochemical function of AldC from PtoDC3000. Analysis of the substrate profile of AldC suggests that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. The 2.5 Å resolution X-ray crystal of the AldC C291A mutant in a dead-end complex with octanal and NAD+ reveals an apolar binding site primed for aliphatic aldehyde substrate recognition. Functional characterization of site-directed mutants targeting the substrate- and NAD(H)-binding sites identifies key residues in the active site for ligand interactions, including those in the "aromatic box" that define the aldehyde-binding site. Overall, this study provides molecular insight for understanding the evolution of the prokaryotic aldehyde dehydrogenase superfamily and their diversity of function.


Assuntos
Aldeído Desidrogenase/química , Proteínas de Bactérias/química , Doenças das Plantas/microbiologia , Pseudomonas syringae/enzimologia , Aldeído Desidrogenase/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Pseudomonas syringae/genética
2.
Nucleic Acids Res ; 44(5): 2462-73, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26837577

RESUMO

A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Antissenso/metabolismo , RNA Guia de Cinetoplastídeos/antagonistas & inibidores , Streptococcus pyogenes/genética , Desenho de Fármacos , Escherichia coli/metabolismo , Marcação de Genes/métodos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , RNA Antissenso/síntese química , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA