Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118687, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493853

RESUMO

The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.


Assuntos
Membranas Artificiais , Microalgas , Polietilenotereftalatos , Ultrafiltração , Águas Residuárias , Polietilenotereftalatos/química , Microalgas/crescimento & desenvolvimento , Ultrafiltração/métodos , Águas Residuárias/química , Águas Residuárias/análise , Eliminação de Resíduos Líquidos/métodos , Meio Ambiente , Reatores Biológicos , Reciclagem
2.
Chemosphere ; 339: 139699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532206

RESUMO

Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.


Assuntos
Microalgas , Biocombustíveis , Biotecnologia , Bioengenharia , Biomassa
3.
Chemosphere ; 341: 139953, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634592

RESUMO

Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.


Assuntos
Microalgas , Águas Residuárias , Animais , Fotobiorreatores , Biocombustíveis , Biomassa , Lipídeos , Estágios do Ciclo de Vida
4.
Environ Res ; 233: 116533, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394167

RESUMO

Changing the growth environment for microalgae can overall lead to the fundamental alteration in cellular biochemicals whilst attaching onto palm kernel expeller (PKE) waste to form adhesion complex in easing harvesting at stationary growth phase. This study had initially optimized the PKE dosage, light intensity and photoperiod in maximizing the attached microalgal productivity being attained at 0.72 g/g day. Lipid content increased progressively from pH 3 to pH 11, with the highest value observed at pH 11. Meanwhile, in terms of protein and carbohydrate contents, the highest values were obtained by cultivation medium of pH 5 with 9.92 g and 17.72 g, respectively followed by pH 7 with 9.16 g and 16.36 g, respectively. Moreover, the findings also suggested that the low pH mediums utilized polar interactions in the formation of complexes between PKE and microalgae, whereas at higher pH levels, the non-polar interactions became more significant. The work of attachment was thermodynamically favourable towards the attachment formation with values greater than zero which was also aligned with the microscopic surface topography, i.e., revealing a clustering pattern of microalgae colonizing the PKE surface. These findings contribute to comprehensive understanding of optimizing growth condition and harvesting strategy of attached microalgae in attaining the cellular biochemical components, facilitating the development of efficient and sustainable bioresource utilization.


Assuntos
Microalgas , Biomassa
5.
Environ Res ; 222: 115352, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716802

RESUMO

The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.


Assuntos
Chlorella vulgaris , Microalgas , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Biofilmes , Biomassa
6.
J Environ Manage ; 316: 115225, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550962

RESUMO

Albeit the biodiesel production from suspended microalgal system has gained immense interests in recent years, the domineering limitation of being economically infeasible has hindered this technology from partaking into a large-scale operation. To curtail this issue, attached growth system had been introduced by various studies; however, those were still unable to alleviate the socio-economic challenges faced in commercializing the microalgal biomass production. Thus, this study had developed a novel approach in cultivating-cum-harvesting attached Chlorella vulgaris sp. microalgae, whilst using solid organic waste of palm kernel expeller (PKE) as the supporting and alimentation material for microalgal biofilm formation. The effects of three variables, namely, PKE dosage, light intensity, and photoperiod, were initially modelled and later optimized using Response Surface Methodology tool. The derived statistical models could predict the growth performances of attached microalgal biomass and lipid productivity. The optimum growing condition was attained at PKE dosage of 5.67 g/L, light intensity of 197 µmol/m2 s and photoperiod of 8 light and 16 dark hours/cycle, achieving the microalgal density and lipid content of 9.87 ± 0.05 g/g and 3.39 ± 0.28 g/g, respectively, with lipid productivity of 29.6 mg/L day. This optimum condition had led to the intensification of biodiesel quality with a high percentage of monounsaturated fatty acid, i.e., oleic acid (C18:1), encompassing 81.86% of total fatty acid methyl ester components. Given that the positive acquisition of PKE as an excellent supporting material in enhancing the microalgal density and lipid productivity that had resulted in the commercially viable biodiesel quality, this study served as a novel revolution in augmenting the microalgae and solid waste utilities for sustainable energy generation.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Biomassa , Ácidos Graxos
7.
Chemosphere ; 292: 133478, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34979202

RESUMO

Low temperature thermal pre-treatment is a low-cost method to break down the structure of extracellular polymeric substances in waste activated sludge (WAS) while improving the sludge biodegradability. However, previous models on low temperature thermal pre-treatment did not adequately elucidate the behaviour of sludge hydrolysis process for the duration ranging from 5 to 9 h. Therefore, this work had developed an inclusive functional model to describe the kinetics of sludge hydrolysis for a wide range of treatment conditions (30 °C-90 °C within 0 and 16 h). As compared with treatment duration, the treatment temperature played a greater impact in solubilizing WAS. Accordingly, the 90 °C treatment had consistently produced WAS with the highest degree of solubility. Nonetheless, the mediocre discrepancies between 90 °C and 75 °C may challenge the practicality of increasing the treatment temperatures beyond 75 °C. The effects of treatment duration on soluble chemical oxygen demand, soluble carbohydrate and soluble protein were only significant during the first 4 h, except for humic substances release that continued to increase with treatment duration. Finally, a good fit with R2 > 0.95 was achieved using an inclusive multivariate non-linear model, substantiating the functionality to predict the kinetics of sludge hydrolysis at arbitrary treatment conditions.


Assuntos
Dinâmica não Linear , Esgotos , Anaerobiose , Hidrólise , Cinética , Temperatura , Eliminação de Resíduos Líquidos
8.
Bioresour Technol ; 342: 125947, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34563823

RESUMO

Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.


Assuntos
Microalgas , Eliminação de Resíduos , Biomassa , Alimentos , Águas Residuárias
9.
J Hazard Mater ; 409: 124455, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33168319

RESUMO

A novel sequential flow baffled microalgal-bacterial (SFB-AlgalBac) photobioreactor was designed to cater for the synergistic interactions between microalgal and bacterial consortia to enhance nitrogen assimilation into microalgal biomass from nutrient-rich wastewater medium. The performance of the SFB-AlgalBac photobioreactor was found to be optimum at the influent flow rate of 5.0 L/d, equivalent to 20 days of hydraulic retention time (HRT). The highest microalgal nitrogen assimilation rate (0.0271 /d) and biomass productivity (1350 mg/d) were recorded amidst this flow rate. Further increase to the 10.0 L/d flow rate reduced the photobioreactor performance, as evidenced by a reduction in microalgal biomass productivity (>10%). The microalgal biomass per unit of nitrogen assimilated values were attained at 16.69 mg/mg for the 5.0 L/d flow rate as opposed to 7.73 mg/mg for the 10.0 L/d flow rate, despite both having comparable specific growth rates. Also, the prior influent treatment by activated sludge was found to exude extracellular polymeric substances which significantly improved the microalgal biomass settleability up to 37%. The employment of SFB-AlgalBac photobioreactor is anticipated could exploit the low-cost nitrogen sources from nutrient-rich wastewaters via bioconversion into valuable microalgal biomass while fulfilling the requirements of sustainable wastewater treatment technologies.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Nitrogênio , Nutrientes , Águas Residuárias
10.
Bioresour Technol ; 304: 122996, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32115347

RESUMO

The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.


Assuntos
Microalgas , Biocombustíveis , Biotecnologia , Carbono , Combustíveis Fósseis , Lipídeos
11.
J Environ Manage ; 249: 109384, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419674

RESUMO

The microalgal-bacterial co-cultivation was adopted as an alternative in making microbial-based biofuel production to be more feasible in considering the economic and environmental prospects. Accordingly, the microalgal-bacterial symbiotic relationship was exploited to enhance the microbial biomass yield, while bioremediating the nitrogen-rich municipal wastewater. An optimized inoculation ratio of microalgae and activated sludge (AS:MA) was predetermined and further optimization was performed in terms of different increment ratios to enhance the bioremediation process. The nitrogen removal was found accelerating with the increase of the increment ratios of inoculated AS:MA, though all the increment ratios had recorded a near complete total nitrogen removal (94-95%). In light of treatment efficiency and lipid production, the increment ratio of 0.5 was hailed as the best microbial population size in accounting the total nitrogen removal efficiency of 94.45%, while not compromising the lipid production of 0.241 g/L. Moreover, the cultures in municipal wastewater had attained higher biomass and lipid productions of 1.42 g/L and 0.242 g/L, respectively, as compared with the synthetic wastewater which were only 1.12 g/L (biomass yield) and 0.175 g/L (lipid yield). This was possibly due to the presence of trace elements which had contributed to the increase of biomass yield; thus, higher lipid attainability from the microalgal-bacterial culture. This synergistic microalgal-bacterial approach had been proven to be effective in treating wastewater, while also producing useful biomass for eventual lipid production with comparable net energy ratio (NER) value of 0.27, obtained from the life-cycle analysis (LCA) studies. Thereby, contributing towards long-term sustainability and possible commercialization of microbial-based biofuel production.


Assuntos
Microalgas , Biodegradação Ambiental , Biocombustíveis , Biomassa , Estudos de Viabilidade , Lipídeos , Águas Residuárias
12.
Hemodial Int ; 10(1): 15-28, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16441823

RESUMO

A thorough knowledge and understanding of the principles underlying the preparation and the clinical application of hemodialysates can help us provide exemplary patient care to individuals having end-stage renal disease. It is prudent to be conversant with the following: (a) how each ingredient in a dialysate works, (b) the clinical circumstances under which the concentration of an ingredient can be altered, and (c) the special situations in which unconventional ingredients can be introduced into a dialysate. The potential to enrich dialysates with appropriate ingredients (such as iron compounds) is limited only by the boundaries of our imagination.


Assuntos
Soluções para Hemodiálise/análise , Diálise Renal , Acetatos/análise , Bicarbonatos/análise , Cálcio/análise , Glucose/análise , Magnésio/análise , Fósforo/análise , Potássio/análise , Sódio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA