Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(10): 1658-1667, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105031

RESUMO

The gene for a previously unexplored two-domain laccase was identified in the genome of actinobacterium Streptomyces carpinensis VKM Ac-1300. The two-domain laccase, named ScaSL, was produced in a heterologous expression system (Escherichia coli strain M15 [pREP4]). The enzyme was purified to homogeneity using affinity chromatography. ScaSL laccase, like most two-domain laccases, exhibited activity in the homotrimer form. However, unlike the most two-domain laccases, it was also active in multimeric forms. The enzyme exhibited maximum activity at 80°C and was thermally stable. Half-inactivation time of ScaSL at 80°C was 40 min. The laccase was able to oxidize a non-phenolic organic compound ABTS at a maximum rate at pH 4.7, and to oxidized a phenolic compound 2,6-dimethoxyphenol at a maximum rate at pH 7.5. The laccase stability was observed in the pH range 9-11. At pH 7.5, laccase was slightly inhibited by sodium azide, sodium fluoride, and sodium chloride; at pH 4.5, the laccase was completely inhibited by 100 mM sodium azide. The determined Km and kcat of the enzyme for ABTS were 0.1 mM and 20 s-1, respectively. The Km and kcat for 2,6-dimethoxyphenol were 0.84 mM and 0.36 s-1, respectively. ScaSL catalyzed polymerization of humic acids and lignin. Redox potential of the laccase was 0.472 ± 0.007 V. Thus, the ScaSL laccase is the first characterized two-domain laccase with a middle redox potential. Crystal structure of ScaSL was determined with 2.35 Å resolution. Comparative analysis of the structures of ScaSL and other two-domain laccases suggested that the middle potential of ScaSL may be associated with conformational differences in the position of the side groups of amino acids at position 230 (in ScaSL numbering), which belong to the second coordination sphere of the copper atom of the T1 center.


Assuntos
Lacase , Lacase/metabolismo , Azida Sódica , Oxirredução , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética
2.
Prep Biochem Biotechnol ; 53(10): 1313-1321, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093814

RESUMO

In the genome of Cellulomonas flavigena, two genes that potentially encode endoglucanases - Cfla_2912 and Cfla_2913 were identified. We cloned the genes and created Pichia pastoris-based recombinant producers of two proteins that were expressed from the AOX1 promoter. Each of the endoglucanase molecules contains a GH6 catalytic domain, CBM2 carbohydrate-binding module, and TAT signal peptide. The fermentation of the producers was carried out in a 10 L fermenter; Cfla_2912 and Cfla_2913 were purified using affinity chromatography. The yield comprised 10.3 mg/ml (430 U/ml) for Cfla_2913 and 9 mg/ml (370 U/ml) for Cfla_2912. Cfla_2912 and Cfla_2913 were found to have a high activity against barley ß-glucan and lichenan, a weak activity against carboxymethyl cellulose (CMC), phosphoric-acid treated cellulose, and no activity against laminarin, xylan, soluble starch, microcrystalline cellulose, cellobiose, and cellotriose. Thus, the proteins exhibited ß-glucanase activity. Both proteins had a neutral pH optimum of about 7.0 and were more stable at neutral and slightly alkaline pH ranging from 7.0 to 9.0. Cfla_2912 and Cfla_2913 showed a moderate thermal stability. The products of barley ß-glucan hydrolysis by Cfla_2912 and Cfla_2913 were trisaccharide, tetrasaccharide, and cellobiose. Cfla_2912 and Cfla_2913 efficiently hydrolyzed cereal polysaccharides, which indicate that they may have biotechnological potential.


Assuntos
Saccharomycetales , beta-Glucanas , Celobiose/metabolismo , Saccharomycetales/metabolismo , Bactérias/metabolismo , beta-Glucanas/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Biochemistry (Mosc) ; 87(7): 617-627, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36154882

RESUMO

Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of ß-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas ß-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-ß-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.


Assuntos
Celulase , Flavobacteriaceae , Ácido Algínico , Biocombustíveis , Carboximetilcelulose Sódica , Celobiose , Celulase/metabolismo , Celulose , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacteriaceae/metabolismo , Glucanos , Glucose , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Enzimas Multifuncionais/genética , Peptídeos , Filogenia , Polissacarídeo-Liases/genética , Sódio , Especificidade por Substrato , Xilanos
4.
Microbiol Resour Announc ; 11(1): e0100021, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989610

RESUMO

Lichen genomes are usually considered genomes of separately cultured mycobiont and photobiont. Analysis of lichen metagenomes can give important information on specific lichen-associated microorganisms that can affect lichen metabolism. Here, we report a metagenome of peltigeralean lichens, containing cyanobacterial (Peltigera canina) and cyanobacterial/green algal (Solorina crocea) partners.

5.
PeerJ ; 9: e11646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221729

RESUMO

BACKGROUND: Two-domain laccases are copper-containing oxidases found in bacteria in the beginning of 2000ths. Two-domain laccases are known for their thermal stability, wide substrate specificity and, the most important of all, their resistance to so-called «strong inhibitors¼ of classical fungal laccases (azides, fluorides). Low redox potential was found to be specific for all the two-domain laccases, due to which these enzymes lost the researchers' interest as potentially applicable for various biotechnological purposes, such as bioremediation. Searching, obtaining and studying the properties of novel two-domain laccases will help to obtain an enzyme with high redox-potential allowing its practical application. METHODS: A gene encoding two-domain laccase was identified in Catenuloplanes japonicus genome, cloned and expressed in an Echerichia coli strain. The protein was purified to homogeneity by immobilized metal ion affinity chromatography. Its molecular properties were studied using electrophoresis in native and denaturing conditions. Physico-chemical properties, kinetic characteristics, substrate specificity and decolorization ability of laccase towards triphenylmethane dyes were measured spectrophotometrically. RESULTS: A novel two-domain recombinant laccase CjSL appeared to be a multimer with a subunit molecular mass of 37 kDa. It oxidized a wide range of phenolic substrates (ferulic acid, caffeic acid, hydroquinone, catechol, etc.) at alkaline pH, while oxidizing of non phenolic substrates (K4[Fe(CN)6], ABTS) was optimal at acidic pH. The UV-visible absorption spectrum of the purified enzyme was specific for all two-domain laccases with peak of absorption at 600 nm and shoulder at 340 nm. The pH optima of CjSL for oxidation of ABTS and 2, 6-DMP substrates were 3.6 and 9.2 respectively. The temperature optimum was 70 °C. The enzyme was most stable in neutral-alkaline conditions. CjSL retained 53% activity after pre-incubation at 90 °C for 60 min. The enzyme retained 26% activity even after 60 min of boiling. The effects of NaF, NaN3, NaCl, EDTA and 1,10-phenanthroline on enzymatic activity were investigated. Only 1,10-phenanthroline reduced laccase activity under both acidic and alkaline conditions. Laccase was able to decolorize triphenylmethane dyes and azo-dyes. ABTS and syringaldehyde were effective mediators for decolorization. The efficacy of dye decolorization depended on pH of the reaction medium.

6.
PLoS One ; 15(9): e0239005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946485

RESUMO

The two-domain bacterial laccases oxidize substrates at alkaline pH. The role of natural phenolic compounds in the oxidation of substrates by the enzyme is poorly understood. We have studied the role of ferulic and caffeic acids in the transformation of low molecular weight substrates and of soil humic acid (HA) by two-domain laccase of Streptomyces puniceus (SpSL, previously undescribed). A gene encoding a two-domain laccase was cloned from S. puniceus and over-expressed in Escherichia coli. The recombinant protein was purified by affinity chromatography to an electrophoretically homogeneous state. The enzyme showed high thermal stability, alkaline pH optimum for the oxidation of phenolic substrates and an acidic pH optimum for the oxidation of K4[Fe(CN)6] (potassium ferrocyanide) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt). Phenolic compounds were oxidized with lower efficiency than K4[Fe(CN)6] and ABTS. The SpSL did not oxidize 3.4-dimethoxybenzoic alcohol and p-hydroxybenzoic acid neither in the absence of phenolic acids nor in their presence. The enzyme polymerized HA-the amount of its high molecular weight fraction (>80 kDa) increased at the expense of low MW fraction (10 kDa). The addition of phenolic acids as potential mediators did not cause the destruction of HA by SpSL. In the absence of the HA, the enzyme polymerized caffeic and ferulic acids to macromolecular fractions (>80 kDa and 10-12 kDa). The interaction of SpSL with HA in the presence of phenolic acids caused an increase in the amount of HA high MW fraction and a two-fold increase in the molecular weight of its low MW fraction (from 10 to 20 kDa), suggesting a cross-coupling reaction. Infrared and solution-state 1H-NMR spectroscopy revealed an increase in the aromaticity of HA after its interaction with phenolic acids. The results of the study expand our knowledge on the transformation of natural substrates by two-domain bacterial laccases and indicate a potentially important role of the enzyme in the formation of soil organic matter (SOM) at alkaline pH values.


Assuntos
Lacase/metabolismo , Solo/química , Streptomyces/metabolismo , Ácidos Cafeicos/metabolismo , Clonagem Molecular/métodos , Ácidos Cumáricos/metabolismo , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Oxirredução , Proteínas Recombinantes/genética , Microbiologia do Solo , Streptomyces/genética , Especificidade por Substrato/genética
7.
J Funct Biomater ; 11(2)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503118

RESUMO

The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility of tumor cells. Here, we showed that a conjugate of 2,5-dihydroxybenzoic acid with gelatin (2,5-DHBA-gelatin), a synthetic polymer with heparin-like properties, suppressed the basal (unstimulated) migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells, which was accompanied by the detachment of a fraction of Hsp90 from cell surface HSPGs. The polymeric conjugate also inhibited the migration/invasion of cells stimulated by exogenous soluble native Hsp90, which correlated with the inhibition of the attachment of soluble Hsp90 to cell surface HSPGs. The action of the 2,5-DHBA-gelatin conjugate on the motility of A-172 and HT1080 cells was similar to that of heparin. The results demonstrate a potential of the 2,5-DHBA-gelatin polymer for the development of antimetastatic drugs targeting cell motility and a possible role of extracellular Hsp90 in the suppression of the migration and invasion of tumor cells mediated by the 2,5-DHBA-gelatin conjugate and heparin.

8.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327510

RESUMO

The genome of an Achromobacter insolitus strain isolated from an agricultural soil polluted with the herbicide glyphosate is reported. The genome size is 6.4 Mb, with an average G+C content of 65.2%. These genomic data could contribute to a better understanding of the biochemistry and regulatory mechanisms of the microbial degradation of glyphosate and aminomethylphosphonate.

9.
J Basic Microbiol ; 58(4): 322-330, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29418014

RESUMO

This work investigated the regulatory role of the interaction between cellobiose dehydrogenase (CDH) and ß-glucosidase (ß-GLU) in the conversion of cellobiose into cellobionolactone or glucose in vitro. To study the regulation, the two enzymes were isolated from the culture medium of the fungus Cerrena unicolor grown on a medium with microcrystalline cellulose. The enzymes were obtained in an electrophoretically homogeneous state. Their properties were studied. Both enzymes had acidic pH optima and were more stable in the acidic pH range. CDH was moderately thermostable, while ß-GLU had a low thermostability. Both enzymes efficiently catalyzed the transformation of cellobiose. A mixture of CDH and ß-GLU transformed cellobiose to glucose or cellobionolactone in the presence of various concentrations of laccase and hydroquinone. Formation of glucose and cellobionolactone in vitro during the competition between CDH and ß-GLU for cellobiose depended on the availability of quinones, formed as a result of the interaction of laccase and hydroquinone, for CDH. At low laccase and hydroquinone concentrations, the formation of glucose was found to predominate over that of cellobionolactone. The possible physiological role of the enzymes' interaction is discussed.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Celobiose/metabolismo , Polyporales/metabolismo , beta-Glucosidase/metabolismo , Desidrogenases de Carboidrato/isolamento & purificação , Celobiose/análogos & derivados , Celobiose/análise , Estabilidade Enzimática , Glucose/análise , Hidroquinonas/metabolismo , Cinética , Lacase/metabolismo , Polyporales/enzimologia , Especificidade por Substrato , beta-Glucosidase/isolamento & purificação
10.
Arch Microbiol ; 199(5): 665-675, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28184965

RESUMO

Four bacterial strains from glyphosate- or alkylphosphonates-contaminated soils were tested for ability to utilize different organophosphonates. All studied strains readily utilized methylphosphonic acid and a number of other phosphonates, but differed in their ability to degrade glyphosate. Only strains Ochrobactrum anthropi GPK 3 and Achromobacter sp. Kg 16 utilized this compound after isolation from enrichment cultures with glyphosate. Achromobacter sp. MPK 7 from the same enrichment culture, similar to Achromobacter sp. MPS 12 from methylphosphonate-polluted source, required adaptation to growth on GP. Studied strains varied significantly in their growth parameters, efficiency of phosphonates degradation and characteristic products of this process, as well as in their energy metabolism. These differences give grounds to propose a possible model of interaction between these strains in microbial consortium in phosphonate-contaminated soils.


Assuntos
Achromobacter/metabolismo , Biodegradação Ambiental , Glicina/análogos & derivados , Ochrobactrum anthropi/metabolismo , Organofosfonatos/metabolismo , Poluentes do Solo/metabolismo , Glicina/metabolismo , Consórcios Microbianos , Compostos Organofosforados/metabolismo , Solo/química , Microbiologia do Solo , Glifosato
11.
AMB Express ; 7(1): 5, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28050845

RESUMO

Four xylanases of Cellulomonas flavigena were cloned, expressed in Escherichia coli and purified. Three enzymes (CFXyl1, CFXyl2, and CFXyl4) were from the GH10 family, while CFXyl3 was from the GH11 family. The enzymes possessed moderate temperature stability and a neutral pH optimum. The enzymes were more stable at alkaline pH values. CFXyl1 and CFXyl2 hydrolyzed xylan to form xylobiose, xylotriose, xylohexaose, xylopentaose, and xylose, which is typical for GH10. CFXyl3 (GH11) and CFXyl4 (GH10) formed the same xylooligosaccharides, but xylose was formed in small amounts. The xylanases made efficient saccharification of rye, wheat and oat, common components of animal feed, which indicates their high biotechnological potential.

12.
Protein J ; 35(1): 44-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26717925

RESUMO

The lysoamidase bacteriolytic complex (LBC) comprising five enzymes (L1-L5) is secreted into the culture liquid by gram-negative bacterium Lysobacter sp. XL1. The medicinal agent lysoamidase has a broad-antimicrobial spectrum. Bacteriolytic protease L1 belongs to the LBC. Recombinant L1 protease of Lysobacter sp. XL1 was expressed, purified to homogeneity and crystallized. The X-ray structure of L1 at 1.35 Å resolution has been determined using the synchrotron data and the molecular replacement method. L1 protease is a thermostable whose thermal unfolding proceeds in one step without forming stable intermediates. Structural information concerning L1 will contribute to the development of new-generation antimicrobial drugs, whose application will not be accompanied by the selection of resistant microorganisms.


Assuntos
Lysobacter/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Dados de Sequência Molecular , Desdobramento de Proteína
13.
Appl Microbiol Biotechnol ; 100(2): 847-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26521241

RESUMO

The growth parameters of Achromobacter sp. Kg 16 (VKM B-2534 D), such as biomass and maximum specific growth rate, depended only on the source of phosphorus in the medium, but not on the carbon source or the presence of growth factors. With glyphosate as a sole phosphorus source, they were still 40-50 % lower than in media supplemented with orthophosphate or other organophosphonate-methylphosphonic acid. At the first time process of glyphosate acetylation and accumulation of acetylglyphosate in culture medium were revealed in this strain. Acetylglyphosate isolated from cultural liquid was identified by mass spectroscopy; its mass spectrum fully corresponded with that of chemically synthesized acetylglyphosate. Even poorer growth was observed in media with acetylglyphosate: although the strain was able to utilize this compound as a sole source of phosphorus, the maximum biomass was still 58-70 % lower than with glyphosate. The presence of acetylglyphosate in culture medium could also hinder the utilization of glyphosate as a phosphorus source. Therefore, the acetylation of glyphosate may be a specific feature of Achromobacter sp. Kg 16 responsible for its poor growth on this compound.


Assuntos
Acetiltransferases/metabolismo , Achromobacter/crescimento & desenvolvimento , Achromobacter/fisiologia , Glicina/análogos & derivados , Fósforo/metabolismo , Microbiologia do Solo , Acetilação , Meios de Cultura/química , Uso de Medicamentos , Glicina/metabolismo , Compostos Organofosforados , Glifosato
14.
Viruses ; 7(10): 5343-60, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26501311

RESUMO

Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5-15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5-0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA-gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA-gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Gelatina/química , Gentisatos/síntese química , Gentisatos/farmacologia , Herpesvirus Bovino 1/efeitos dos fármacos , Herpesvirus Suídeo 1/efeitos dos fármacos , Animais , Linhagem Celular , Gelatina/metabolismo , Herpesvirus Bovino 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Concentração Inibidora 50 , Ligação Viral/efeitos dos fármacos
15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 9): 1200-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26323308

RESUMO

Laccase (EC 1.10.3.2) is one of the most common copper-containing oxidases; it is found in many organisms and catalyzes the oxidation of primarily phenolic compounds by oxygen. Two-domain laccases have unusual thermostability, resistance to inhibitors and an alkaline optimum of activity. The causes of these properties in two-domain laccases are poorly understood. A recombinant two-domain laccase (SgfSL) was cloned from the genome of Streptomyces griseoflavus Ac-993, expressed in Escherichia coli and purified to homogeneity. The crystals of SgfSL belonged to the monoclinic space group P21, with unit-cell parameters a = 74.64, b = 94.72, c = 117.40 Å, ß = 90.672°, and diffraction data were collected to 2.0 Šresolution using a synchrotron-radiation source. Two functional trimers per asymmetric unit correspond to a Matthews coefficient of 1.99 Å(3) Da(-1) according to the monomer molecular weight of 35.6 kDa.


Assuntos
Lacase/química , Streptomyces/enzimologia , Sequência de Aminoácidos , Cristalização , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta , Eletricidade Estática , Difração de Raios X
16.
World J Microbiol Biotechnol ; 30(3): 801-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24142469

RESUMO

A xylanase gene was isolated from the genomic DNA of Streptomyces coelicolor Ac-738. The 723-bp full-length gene encoded a 241-amino acid peptide consisting of a 49-residue putative TAT signal peptide and a glycoside hydrolase family-11 domain. The mature enzyme called XSC738 was expressed in Escherichia coli M15[pREP4]. The electrophoretically homogeneous protein with a specific activity of 167 U/mg for beechwood xylan was purified. The pH optimum of XSC738 was at pH 6; a high activity was retained within a pH range of 4.5-8.5. The enzyme was thermostable at 50-60 °C and retained an activity at pH 3.0-7.0. Xylanase XSC738 was activated by Mn²âº, Co²âº and largely inhibited by Cd²âº, SDS and EDTA. The products of xylan hydrolysis were mainly xylobiose, xylotriose, xylopentaose and xylohexose. Xylotetraose appeared as a minor product. Processing of such agricultural xylan-containing products as wheat, oats, soy flour and wheat bran by xylanase resulted in an increased content of sugars.


Assuntos
Streptomyces coelicolor/enzimologia , Xilosidases/metabolismo , Avena/metabolismo , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Metais/metabolismo , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Streptomyces coelicolor/genética , Temperatura , Triticum/metabolismo , Xilanos/metabolismo , Xilosidases/química , Xilosidases/genética , Xilosidases/isolamento & purificação
17.
Appl Microbiol Biotechnol ; 93(2): 787-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21789492

RESUMO

Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C-P lyase incapable of degrading GP (C-P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C-P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C-P lyase II. O. anthropi GPK 3 also degraded MP via C-P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.


Assuntos
Achromobacter/metabolismo , Glicina/análogos & derivados , Redes e Vias Metabólicas/genética , Ochrobactrum anthropi/metabolismo , Compostos Organofosforados/metabolismo , Microbiologia do Solo , Achromobacter/classificação , Achromobacter/genética , Achromobacter/isolamento & purificação , Biotransformação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glicina/metabolismo , Ochrobactrum anthropi/classificação , Ochrobactrum anthropi/genética , Ochrobactrum anthropi/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Glifosato
18.
Artigo em Inglês | MEDLINE | ID: mdl-21821897

RESUMO

The ligninolytic enzymes of the basidiomycetes play a key role in the global carbon cycle. A characteristic property of these enzymes is their broad substrate specificity, which has led to their use in various biotechnologies, thus stimulating research into the three-dimensional structures of ligninolytic enzymes. This paper presents the purification, crystallization and preliminary X-ray analysis of the laccase from the ligninolytic basidiomycete Ganoderma lucidum.


Assuntos
Lacase/química , Reishi/enzimologia , Cristalização , Cristalografia por Raios X , Lacase/isolamento & purificação , Modelos Moleculares , Estrutura Terciária de Proteína
19.
Appl Microbiol Biotechnol ; 88(2): 585-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20676632

RESUMO

Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils.


Assuntos
Achromobacter/metabolismo , Glicina/análogos & derivados , Ochrobactrum anthropi/metabolismo , Microbiologia do Solo , Aerobiose , Animais , Biodegradação Ambiental , Daphnia , Glicina/metabolismo , Oligoquetos , Poluentes do Solo/metabolismo , Glifosato
20.
J Basic Microbiol ; 50(1): 72-82, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20175123

RESUMO

The laccase induction in submerged culture of basidiomycete Cerrena unicolor VKM F-3196 was investigated. Cu(2+) at concentration 0.1 mM was an optimum inducer of C. unicolor laccase. Two isoforms of laccase, namely LacC1 and LacC2, were isolated and characterized. The isoforms were shown to have different physical-chemical and catalytic properties. On the basis of the MALDI TOF MS analysis of tryptic cleavage products of both the proteins and N-terminal amino-acid sequences analysis two isoforms of laccase (LacC1 and LacC2) were classified as products of two different genes.


Assuntos
Basidiomycota/enzimologia , Proteínas Fúngicas/química , Lacase/química , Sequência de Aminoácidos , Basidiomycota/genética , Carboidratos/química , Meios de Cultura , Proteínas Fúngicas/isolamento & purificação , Genes Fúngicos , Glicosilação , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Isoenzimas/química , Isoenzimas/isolamento & purificação , Lacase/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA