Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Host Microbe ; 30(7): 988-1002.e6, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35640610

RESUMO

The impacts of individual commensal microbes on immunity and disease can differ dramatically depending on the surrounding microbial context; however, the specific bacterial combinations that dictate divergent immunological outcomes remain largely undefined. Here, we characterize an immunostimulatory Allobaculum species from an inflammatory bowel disease patient that exacerbates colitis in gnotobiotic mice. Allobaculum inversely associates with the taxonomically divergent immunostimulatory species Akkermansia muciniphila in human-microbiota-associated mice and human cohorts. Co-colonization with A. muciniphila ameliorates Allobaculum-induced intestinal epithelial cell activation and colitis in mice, whereas Allobaculum blunts the A.muciniphila-specific systemic antibody response and reprograms the immunological milieu in mesenteric lymph nodes by blocking A.muciniphila-induced dendritic cell activation and T cell expansion. These studies thus identify a pairwise reciprocal interaction between human gut bacteria that dictates divergent immunological outcomes. Furthermore, they establish a generalizable framework to define the contextual cues contributing to the "incomplete penetrance" of microbial impacts on human disease.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Vida Livre de Germes , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/microbiologia , Camundongos , Verrucomicrobia
2.
Front Microbiol ; 13: 813849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250930

RESUMO

There is a current need for enhancing our insight in the effects of antimicrobial treatment on the composition of human microbiota. Also, the spontaneous restoration of the microbiota after antimicrobial treatment requires better understanding. This is best addressed in well-defined animal models. We here present a model in which immune-competent or neutropenic mice were administered piperacillin-tazobactam (TZP) according to human treatment schedules. Before, during and after the TZP treatment, fecal specimens were longitudinally collected at established intervals over several weeks. Gut microbial taxonomic distribution and abundance were assessed through culture and molecular means during all periods. Non-targeted metabolomics analyses of stool samples using Quadrupole Time of Flight mass spectrometry (QTOF MS) were also applied to determine if a metabolic fingerprint correlated with antibiotic use, immune status, and microbial abundance. TZP treatment led to a 5-10-fold decrease in bacterial fecal viability counts which were not fully restored during post-antibiotic follow up. Two distinct, relatively uniform and reproducible restoration scenarios of microbiota changes were seen in post TZP-treatment mice. Post-antibiotic flora could consist of predominantly Firmicutes or, alternatively, a more diverse mix of taxa. In general, the pre-treatment microbial communities were not fully restored within the screening periods applied. A new species, closely related to Eubacterium siraeum, Mageeibacillus indolicus, and Saccharofermentans acetigenes, became predominant post-treatment in a significant proportion of mice, identified by 16S rRNA gene sequencing. Principal component analysis of QTOF MS of mouse feces successfully distinguished treated from non-treated mice as well as immunocompetent from neutropenic mice. We observe dynamic but distinct and reproducible responses in the mouse gut microbiota during and after TZP treatment and propose the current murine model as a useful tool for defining the more general post-antibiotic effects in the gastro-intestinal ecosystem where humanized antibiotic dosing may ultimately facilitate extrapolation to humans.

3.
Nat Commun ; 10(1): 5029, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695033

RESUMO

The 16S rRNA gene has been a mainstay of sequence-based bacterial analysis for decades. However, high-throughput sequencing of the full gene has only recently become a realistic prospect. Here, we use in silico and sequence-based experiments to critically re-evaluate the potential of the 16S gene to provide taxonomic resolution at species and strain level. We demonstrate that targeting of 16S variable regions with short-read sequencing platforms cannot achieve the taxonomic resolution afforded by sequencing the entire (~1500 bp) gene. We further demonstrate that full-length sequencing platforms are sufficiently accurate to resolve subtle nucleotide substitutions (but not insertions/deletions) that exist between intragenomic copies of the 16S gene. In consequence, we argue that modern analysis approaches must necessarily account for intragenomic variation between 16S gene copies. In particular, we demonstrate that appropriate treatment of full-length 16S intragenomic copy variants has the potential to provide taxonomic resolution of bacterial communities at species and strain level.


Assuntos
Bactérias/classificação , Bactérias/genética , Variação Genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Bactérias/isolamento & purificação , Técnicas Bacteriológicas , Sequência de Bases , Biologia Computacional , Simulação por Computador , DNA Bacteriano/genética , Fezes/microbiologia , Dosagem de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo Genético , Análise de Sequência de DNA
4.
Nat Med ; 25(5): 792-804, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068711

RESUMO

Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways and affect behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus. The cohort underwent integrative personalized omics profiling from samples collected quarterly for up to 8 years (median, 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome and wearable monitoring. We discovered more than 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance by using omics measurements, illustrating their potential to replace burdensome tests. Finally, study participation led the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health.


Assuntos
Big Data , Diabetes Mellitus Tipo 2/etiologia , Medicina de Precisão/estatística & dados numéricos , Adulto , Idoso , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Exoma , Feminino , Microbioma Gastrointestinal , Humanos , Resistência à Insulina , Estudos Longitudinais , Masculino , Metaboloma , Pessoa de Meia-Idade , Modelos Biológicos , Fatores de Risco , Transcriptoma
5.
Nature ; 569(7758): 663-671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142858

RESUMO

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Assuntos
Biomarcadores/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/genética , Estado Pré-Diabético/microbiologia , Proteoma/metabolismo , Transcriptoma , Adulto , Idoso , Antibacterianos/administração & dosagem , Biomarcadores/análise , Estudos de Coortes , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/metabolismo , Vacinas contra Influenza/imunologia , Insulina/metabolismo , Resistência à Insulina , Estudos Longitudinais , Masculino , Microbiota/fisiologia , Pessoa de Meia-Idade , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Estresse Fisiológico , Vacinação/estatística & dados numéricos
6.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691340

RESUMO

Although the TEM-1 ß-lactamase (BlaTEM-1) hydrolyzes penicillins and narrow-spectrum cephalosporins, organisms expressing this enzyme are typically susceptible to ß-lactam/ß-lactamase inhibitor combinations such as piperacillin-tazobactam (TZP). However, our previous work led to the discovery of 28 clinical isolates of Escherichia coli resistant to TZP that contained only blaTEM-1 One of these isolates, E. coli 907355, was investigated further in this study. E. coli 907355 exhibited significantly higher ß-lactamase activity and BlaTEM-1 protein levels when grown in the presence of subinhibitory concentrations of TZP. A corresponding TZP-dependent increase in blaTEM-1 copy number was also observed, with as many as 113 copies of the gene detected per cell. These results suggest that TZP treatment promotes an increase in blaTEM-1 gene dosage, allowing BlaTEM-1 to reach high enough levels to overcome inactivation by the available tazobactam in the culture. To better understand the nature of the blaTEM-1 copy number proliferation, whole-genome sequence (WGS) analysis was performed on E. coli 907355 in the absence and presence of TZP. The WGS data revealed that the blaTEM-1 gene is located in a 10-kb genomic resistance module (GRM) that contains multiple resistance genes and mobile genetic elements. The GRM was found to be tandemly repeated at least 5 times within a p1ESCUM/p1ECUMN-like plasmid when bacteria were grown in the presence of TZP.IMPORTANCE Understanding how bacteria acquire resistance to antibiotics is essential for treating infected patients effectively, as well as preventing the spread of resistant organisms. In this study, a clinical isolate of E. coli was identified that dedicated more than 15% of its genome toward tandem amplification of a ~10-kb resistance module, allowing it to escape antibiotic-mediated killing. Our research is significant in that it provides one possible explanation for clinical isolates that exhibit discordant behavior when tested for antibiotic resistance by different phenotypic methods. Our research also shows that GRM amplification is difficult to detect by short-read WGS technologies. Analysis of raw long-read sequence data was required to confirm GRM amplification as a mechanism of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Amplificação de Genes , Combinação Piperacilina e Tazobactam/farmacocinética , Resistência beta-Lactâmica , beta-Lactamases/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Dosagem de Genes , Humanos , Inibidores de beta-Lactamases/farmacologia
7.
J Clin Microbiol ; 52(7): 2365-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24759713

RESUMO

Multidrug-resistant nosocomial pathogens present a major burden for hospitals. Rapid cluster identification and pathogen profiling, i.e., of antibiotic resistance and virulence genes, are crucial for effective infection control. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, is now one of the leading causes of nosocomial infections. In this study, whole-genome sequencing (WGS) was applied retrospectively to an unusual spike in MRSA cases in two intensive care units (ICUs) over the course of 4 weeks. While the epidemiological investigation concluded that there were two separate clusters, each associated with one ICU, S. aureus protein A gene (spa) typing data suggested that they belonged to single clonal cluster (all cases shared spa type t001). Standardized gene sets were used to extract an allele-based profile for typing and an antibiotic resistance and toxin gene profile. The WGS results produced high-resolution allelic profiles, which were used to discriminate the MRSA clusters, corroborating the epidemiological investigation and identifying previously unsuspected transmission events. The antibiotic resistance profile was in agreement with the original clinical laboratory susceptibility profile, and the toxin profile provided additional, previously unknown information. WGS coupled with allelic profiling provided a high-resolution method that can be implemented as regular screening for effective infection control.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/classificação , Análise de Sequência de DNA/métodos , Infecções Estafilocócicas/microbiologia , Infecção Hospitalar/epidemiologia , Humanos , Unidades de Terapia Intensiva , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Epidemiologia Molecular/métodos , Dados de Sequência Molecular , Infecções Estafilocócicas/epidemiologia
8.
Environ Microbiol ; 16(4): 963-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24034719

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) of serogroup O174 are human pathogenic intimin gene (eae)-negative STEC. To facilitate diagnosis and subtyping, we genotypically and phenotypically characterized 25 STEC O174 isolates from humans with different clinical outcomes and from animals and the environment. fliC genotyping resulted in four different genotypes (fliCH2 : n = 5; fliCH8 : n = 8; fliCH21 : n = 11; fliCH46 : n = 1). Twenty-three strains were motile expressing the corresponding H antigen; two non-motile isolates possessed fliCH8 . The stx genotypes and non-stx virulence loci, including toxins, serine-proteases and adhesins correlated well with serotypes but showed no differences with respect to the isolates' origins. Multilocus sequence typing identified seven sequence types that correlated with serotypes. Core gene typing further specified the four serotypes, including a previously unknown O174:H46 combination, and revealed distant relationships of the different serotypes within serogroup O174 and in relation to other haemolytic uremic syndrome (HUS)-associated STEC. Only serotype O174:H21 was associated with HUS. Differences in virulence factors and in the adherence capacity of STEC O174 corroborated this separation into four distinct groups. Our study provides a basis for O174 subtyping, unravels considerable genotypic and phenotypic heterogeneity and sheds light to potential environmental and animal reservoirs.


Assuntos
Proteínas de Escherichia coli/genética , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/fisiologia , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Bovinos , Linhagem Celular , Chlorocebus aethiops , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/toxicidade , Genótipo , Humanos , Mucosa Intestinal/microbiologia , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Fenótipo , Filogenia , Toxina Shiga/toxicidade , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/isolamento & purificação , Células Vero
9.
Genome Biol Evol ; 5(10): 1807-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24105689

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H⁻ is the predominant non-O157 EHEC serotype among patients with diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS) worldwide. To elucidate their phylogeny and association between their phylogenetic background and clinical outcome of the infection, we investigated 120 EHEC O26:H11/H⁻ strains isolated between 1965 and 2012 from asymptomatic carriers and patients with diarrhea or HUS. Whole-genome shotgun sequencing (WGS) was applied to ten representative EHEC O26 isolates to determine single nucleotide polymorphism (SNP) localizations within a predefined set of core genes. A multiplex SNP assay, comprising a randomly distributed subset of 48 SNPs, was established to detect SNPs in 110 additional EHEC O26 strains. Within approximately 1 Mb of core genes, WGS resulted in 476 high-quality bi-allelic SNP localizations. Forty-eight of these were subsequently investigated in 110 EHEC O26 and four different SNP clonal complexes (SNP-CC) were identified. SNP-CC2 was significantly associated with the development of HUS. Within the subsequently established evolutionary model of EHEC O26, we dated the emergence of human EHEC O26 to approximately 19,700 years ago and demonstrated a recent evolution within humans into the 4 SNP-CCs over the past 1,650 years. WGS and subsequent SNP typing enabled us to gain new insights into the evolution of EHEC O26 suggesting a common theme in this EHEC group with analogies to EHEC O157. In addition, the SNP-CC analysis may help to assess a risk in infected individuals for the progression to HUS and to implement more specific infection control measures.


Assuntos
Escherichia coli Êntero-Hemorrágica/genética , Evolução Molecular , Polimorfismo de Nucleotídeo Único/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/genética , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Filogenia
10.
Appl Environ Microbiol ; 79(22): 7036-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014531

RESUMO

Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP)-based typing panel was developed that redundantly identified 11 genogroups that span six of the eight lineages recently described for E. coli O157:H7 (J. L. Bono, T. P. Smith, J. E. Keen, G. P. Harhay, T. G. McDaneld, R. E. Mandrell, W. K. Jung, T. E. Besser, P. Gerner-Smidt, M. Bielaszewska, H. Karch, M. L. Clawson, Mol. Biol. Evol. 29:2047-2062, 2012) and additionally defined subgroups within four of those lineages. This assay was applied to 530 isolates from human and bovine sources. The SNP-based lineage groups were concordant with previously identified E. coli O157:H7 genotypes identified by other methods and were strongly associated with carriage of specific Stx genes. Two SNP lineages (Ia and Vb) were disproportionately represented among cattle isolates, and three others (IIa, Ib, and IIb) were disproportionately represented among human clinical isolates. This 48-plex SNP assay efficiently and economically identifies biologically relevant lineages within E. coli O157:H7.


Assuntos
Escherichia coli O157/classificação , Escherichia coli O157/isolamento & purificação , Genótipo , Polimorfismo de Nucleotídeo Único , Animais , Técnicas de Tipagem Bacteriana , Bovinos/microbiologia , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Genes Bacterianos , Humanos , Filogenia , Análise de Sequência de DNA , Toxina Shiga I/genética
11.
Emerg Infect Dis ; 18(4): 582-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22469031

RESUMO

Highly pathogenic enterohemorrhagic Escherichia coli (EHEC) O157 cause a spectrum of clinical signs that include diarrhea, bloody diarrhea, and hemolytic uremic syndrome. The current evolutionary model of EHEC O157:H7/H(-) consists of a stepwise evolution scenario proceeding from O55:H7 to a node (hypothetical intermediate) that then branches into sorbitol-fermenting (SF) O157:H(-) and non-SF (NSF) O157:H7. To identify this hypothetical intermediate, we performed single nucleotide polymorphism analysis by sequencing of 92 randomly distributed backbone genomic regions of 40 O157:H7/H(-) isolates. Overall, 111 single nucleotide polymorphisms were identified in 75/92 partial open reading frames after sequencing 51,041 nt/strain. The EHEC O157:H7 strain LSU-61 from deer occupied an intermediate position between O55:H7 and both O157 branches (SF and NSF O157), complementing the stepwise evolutionary model of EHEC O157:H7/H(-). The animal origin of this intermediate emphasizes the value of nonhuman reservoirs in the clarification of the evolution of human pathogens.


Assuntos
Escherichia coli O157/genética , Polimorfismo de Nucleotídeo Único , Animais , Cervos/microbiologia , Escherichia coli O157/classificação , Evolução Molecular , Fezes/microbiologia , Especiação Genética , Genoma Bacteriano , Genótipo , Humanos , Modelos Genéticos , Tipagem de Sequências Multilocus , Filogenia , Análise de Sequência de DNA
12.
PLoS One ; 6(7): e22751, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799941

RESUMO

An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.


Assuntos
Surtos de Doenças , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Genômica/métodos , Análise de Sequência de DNA/métodos , Adulto , Evolução Molecular , Alemanha/epidemiologia , Humanos , Filogenia , Estudos Prospectivos , Fatores de Tempo
13.
BMC Evol Biol ; 11: 183, 2011 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21708031

RESUMO

BACKGROUND: Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence. RESULTS: The phylogeny of E. coli varies according to the segment of chromosome analyzed. Recombination between extant E. coli groups is largely limited to only three intergroup pairings. CONCLUSIONS: Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, E. coli are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of E. coli as a species, or herald the coalescence of E. coli groups into new species.


Assuntos
Escherichia coli/classificação , Escherichia coli/genética , Filogenia , Recombinação Genética , Dados de Sequência Molecular
14.
Pediatr Nephrol ; 26(11): 2059-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20809220

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) infection leads to marked intestinal injury. Sigmoid colon obtained from two children during EHEC infection exhibited abundant TUNEL-positive cells. To define which bacterial virulence factors contribute to intestinal injury the presence of Shiga toxin-2 (Stx2), intimin and the type III secretion system were correlated with symptoms and intestinal damage. C3H/HeN mice were inoculated with Stx2-producing (86-24) and non-producing (87-23) E. coli O157:H7 strains and 86-24 mutants lacking eae, encoding intimin (strain UMD619) or escN regulating the expression of type III secretion effectors (strain CVD451). Severe symptoms developed in mice inoculated with 86-24 and 87-23. Few mice inoculated with the mutant strains developed severe symptoms. Strain 86-24 exhibited higher fecal bacterial counts, followed by 87-23, whereas strains UMD619 and CVD451 showed minimal fecal counts. More TUNEL-positive cells were found in proximal and distal colons of mice inoculated with strain 86-24 compared with strains 87-23 and CVD451 (p ≤ 0.01) or UMD619 (p < 0.05, proximal colon, p < 0.01, distal colon). The results show that strains 86-24 and 87-23 exhibited better colonic persistence and more symptoms, presumably due to the presence of intimin and type III secretion effectors. Extensive intestinal mucosal cell death was related to the presence of Stx2.


Assuntos
Colite/microbiologia , Colite/patologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/patologia , Adolescente , Animais , Toxinas Bacterianas/metabolismo , Criança , Colite/metabolismo , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos adversos , Proteínas de Escherichia coli/metabolismo , Feminino , Síndrome Hemolítico-Urêmica/metabolismo , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lactente , Masculino , Camundongos
15.
Infect Genet Evol ; 10(8): 1282-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20691811

RESUMO

Escherichia coli O157:H7 is a human pathogen that has emerged from its less pathogenic progenitor, E. coli O55:H7, to form the EHEC 1 clade. In its emergence, E. coli O157:H7 formed three distinct clusters, each of which exists today. Sequencing and SNP analysis of Cluster 1 of this clade demonstrated constrained radiation from the cluster founder. Here we investigated the diversity of Cluster 2 strains by sequencing signature SNPs in six strains collected throughout Washington State. Our results suggest that successful Cluster 2 strains have radiated on only two branches from their founder; one of these two branches leads to Cluster 3. Constrained radiation appears to be a common theme among this pathogenic clade.


Assuntos
DNA Bacteriano/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Técnicas de Tipagem Bacteriana , Sequência de Bases , Evolução Biológica , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli O157/classificação , Escherichia coli O157/patogenicidade , Expressão Gênica , Variação Genética , Genoma Bacteriano , Genômica/métodos , Genótipo , Humanos , Mutação , Antígenos O/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Toxinas Shiga/genética , Virulência
16.
Proc Natl Acad Sci U S A ; 106(21): 8713-8, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19439656

RESUMO

Single nucleotide polymorphisms (SNPs) in stable genome regions provide durable measurements of species evolution. We systematically identified each SNP in concatenations of all backbone ORFs in 7 newly or previously sequenced evolutionarily instructive pathogenic Escherichia coli O157:H7, O157:H(-), and O55:H7. The 1,113 synonymous SNPs demonstrate emergence of the largest cluster of this pathogen only in the last millennium. Unexpectedly, shared SNPs within circumscribed clusters of organisms suggest severely restricted survival and limited effective population sizes of pathogenic O157:H7, tenuous survival of these organisms in nature, source-sink evolutionary dynamics, or, possibly, a limited number of mutations that confer selective advantage. A single large segment spanning the rfb-gnd gene cluster is the only backbone region convincingly acquired by recombination as O157 emerged from O55. This concatenomic analysis also supports using SNPs to differentiate closely related pathogens for infection control and forensic purposes. However, constrained radiations raise the possibility of making false associations between isolates.


Assuntos
Escherichia coli O157/metabolismo , Sequência de Bases , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Escherichia coli O157/efeitos da radiação , Genoma Bacteriano/genética , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA