Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703764

RESUMO

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
2.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585734

RESUMO

The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models; however, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular fate under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate cell fate. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby successfully avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.

4.
Elife ; 122023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910016

RESUMO

Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine crosslinking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer (kinesin-1 heavy chain [KHC]) and kinesin-1 heterotetramer (KHC bound to kinesin light chain 1 [KLC1]). Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled-coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.


Assuntos
Cinesinas , Proteínas Associadas aos Microtúbulos , Transporte Biológico , Consenso , Espectrometria de Massas
5.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894717

RESUMO

The Atg12 protein in yeast is an indispensable polypeptide in the highly conserved ubiquitin-like conjugation system operating in the macroautophagy/autophagy pathway. Atg12 is covalently conjugated to Atg5 through the action of Atg7 and Atg10; the Atg12-Atg5 conjugate binds Atg16 to form an E3 ligase that functions in a separate conjugation pathway involving Atg8. Atg12 is comprised of a ubiquitin-like (UBL) domain preceded at the N terminus by an intrinsically disordered protein region (IDPR), a domain that comprises a major portion of the protein but remains elusive in its conformation and function. Here, we show that the IDPR in unconjugated Atg12 is positioned in proximity to the UBL domain, a configuration that is important for the functional structure of the protein. A major deletion in the IDPR disrupts intactness of the UBL domain at the unconjugated C terminus, and a mutation in the predicted α0 helix in the IDPR prevents Atg12 from binding to Atg7 and Atg10, which ultimately affects the protein function in the ubiquitin-like conjugation cascade. These findings provide evidence that the IDPR is an indispensable part of the Atg12 protein from yeast.


Assuntos
Proteína 12 Relacionada à Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
6.
J Proteome Res ; 22(11): 3439-3446, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37844105

RESUMO

Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..


Assuntos
Proteínas de Transporte , Retículo Endoplasmático , Proteínas de Membrana , Humanos , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi , Proteínas de Membrana/metabolismo , Transporte Proteico
7.
J Am Chem Soc ; 145(39): 21303-21318, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738129

RESUMO

Mass spectrometry-based chemoproteomics has emerged as an enabling technology for functional biology and drug discovery. To address limitations of established chemoproteomics workflows, including cumbersome reagent synthesis and low throughput sample preparation, here, we established the silane-based cleavable isotopically labeled proteomics (sCIP) method. The sCIP method is enabled by a high yielding and scalable route to dialkoxydiphenylsilane fluorenylmethyloxycarbonyl (DADPS-Fmoc)-protected amino acid building blocks, which enable the facile synthesis of customizable, isotopically labeled, and chemically cleavable biotin capture reagents. sCIP is compatible with both MS1- and MS2-based quantitation, and the sCIP-MS2 method is distinguished by its click-assembled isobaric tags in which the reporter group is encoded in the sCIP capture reagent and balancer in the pan cysteine-reactive probe. The sCIP-MS2 workflow streamlines sample preparation with early stage isobaric labeling and sample pooling, allowing for high coverage and increased sample throughput via customized low cost six-plex sample multiplexing. When paired with a custom FragPipe data analysis workflow and applied to cysteine-reactive fragment screens, sCIP proteomics revealed established and unprecedented cysteine-ligand pairs, including the discovery that mitochondrial uncoupling agent FCCP acts as a covalent-reversible cysteine-reactive electrophile.


Assuntos
Cisteína , Silanos , Espectrometria de Massas , Indicadores e Reagentes , Proteômica/métodos
8.
Cancer Cell ; 41(8): 1397-1406, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582339

RESUMO

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.


Assuntos
Neoplasias , Proteogenômica , Humanos , Proteômica , Genômica , Neoplasias/genética , Perfilação da Expressão Gênica
9.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541199

RESUMO

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteogenômica , Feminino , Humanos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
10.
J Proteome Res ; 22(8): 2641-2659, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37467362

RESUMO

Repeated measures experimental designs, which quantify proteins in biological subjects repeatedly over multiple experimental conditions or times, are commonly used in mass spectrometry-based proteomics. Such designs distinguish the biological variation within and between the subjects and increase the statistical power of detecting within-subject changes in protein abundance. Meanwhile, proteomics experiments increasingly incorporate tandem mass tag (TMT) labeling, a multiplexing strategy that gains both relative protein quantification accuracy and sample throughput. However, combining repeated measures and TMT multiplexing in a large-scale investigation presents statistical challenges due to unique interplays of between-mixture, within-mixture, between-subject, and within-subject variation. This manuscript proposes a family of linear mixed-effects models for differential analysis of proteomics experiments with repeated measures and TMT multiplexing. These models decompose the variation in the data into the contributions from its sources as appropriate for the specifics of each experiment, enable statistical inference of differential protein abundance, and recognize a difference in the uncertainty of between-subject versus within-subject comparisons. The proposed family of models is implemented in the R/Bioconductor package MSstatsTMT v2.2.0. Evaluations of four simulated datasets and four investigations answering diverse biological questions demonstrated the value of this approach as compared to the existing general-purpose approaches and implementations.


Assuntos
Projetos de Pesquisa , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise
11.
Nat Commun ; 14(1): 3461, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308510

RESUMO

Recent interest in targeted therapies has been sparked by the study of MHC-associated peptides (MAPs) that undergo post-translational modifications (PTMs), particularly glycosylation. In this study, we introduce a fast computational workflow that merges the MSFragger-Glyco search algorithm with a false discovery rate control for glycopeptide analysis from mass spectrometry-based immunopeptidome data. By analyzing eight large-scale publicly available studies, we find that glycosylated MAPs are predominantly presented by MHC class II. Here, we present HLA-Glyco, a comprehensive resource containing over 3,400 human leukocyte antigen (HLA) class II N-glycopeptides from 1,049 distinct protein glycosylation sites. This resource provides valuable insights, including high levels of truncated glycans, conserved HLA-binding cores, and differences in glycosylation positional specificity between HLA allele groups. We integrate the workflow within the FragPipe computational platform and provide HLA-Glyco as a free web resource. Overall, our work provides a valuable tool and resource to aid the nascent field of glyco-immunopeptidomics.


Assuntos
Algoritmos , Processamento de Proteína Pós-Traducional , Humanos , Glicosilação , Genes MHC da Classe II , Glicopeptídeos
12.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066360

RESUMO

Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.

13.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36747757

RESUMO

Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine cross-linking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer [kinesin-1 heavy chain (KHC)] and kinesin-1 heterotetramer [KHC bound to kinesin light chain 1 (KLC1)]. Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.

14.
Nat Biotechnol ; 41(2): 239-251, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36203013

RESUMO

Post-translational modification (PTM) of antigens provides an additional source of specificities targeted by immune responses to tumors or pathogens, but identifying antigen PTMs and assessing their role in shaping the immunopeptidome is challenging. Here we describe the Protein Modification Integrated Search Engine (PROMISE), an antigen discovery pipeline that enables the analysis of 29 different PTM combinations from multiple clinical cohorts and cell lines. We expanded the antigen landscape, uncovering human leukocyte antigen class I binding motifs defined by specific PTMs with haplotype-specific binding preferences and revealing disease-specific modified targets, including thousands of new cancer-specific antigens that can be shared between patients and across cancer types. Furthermore, we uncovered a subset of modified peptides that are specific to cancer tissue and driven by post-translational changes that occurred in the tumor proteome. Our findings highlight principles of PTM-driven antigenicity, which may have broad implications for T cell-mediated therapies in cancer and beyond.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Processamento de Proteína Pós-Traducional/genética , Peptídeos/genética , Antígenos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética
15.
Cancer Cell ; 41(1): 139-163.e17, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563681

RESUMO

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Resultado do Tratamento , Prognóstico , Biomarcadores Tumorais/genética
16.
Anal Biochem ; 655: 114846, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973625

RESUMO

Analysis of the full spectrum of secreted proteins in cell culture is complicated by leakage of intracellular proteins from damaged cells. To address this issue, we compared the abundance of individual proteins between the cell lysate and the conditioned medium, reasoning that secreted proteins should be relatively more abundant in the conditioned medium. Marked enrichment for signal-peptide-bearing proteins with increasing conditioned media to cell lysate ratio, as well loss of this signal following brefeldin A treatment, confirmed the sensitivity and specificity of this approach. The subset of proteins demonstrating increased conditioned media to cell lysate ratio in the presence of Brefeldin A identified candidates for unconventional secretion via a pathway independent of ER to Golgi trafficking.


Assuntos
Complexo de Golgi , Proteínas , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Meios de Cultivo Condicionados/metabolismo , Complexo de Golgi/metabolismo , Proteínas/metabolismo
17.
J Biol Chem ; 298(8): 102219, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780830

RESUMO

Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease-related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA-binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum-Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington's disease.


Assuntos
Doenças Neurodegenerativas , Animais , Autofagossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Lisossomos/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo
18.
Clin Proteomics ; 18(1): 28, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861815

RESUMO

BACKGROUND: Vitreous is an accessible, information-rich biofluid that has recently been studied as a source of retinal disease-related proteins and pathways. However, the number of samples required to confidently identify perturbed pathways remains unknown. In order to confidently identify these pathways, power analysis must be performed to determine the number of samples required, and sample preparation and analysis must be rigorously defined. METHODS: Control (n = 27) and proliferative diabetic retinopathy (n = 23) vitreous samples were treated as biologically distinct individuals or pooled together and aliquoted into technical replicates. Quantitative mass spectrometry with tandem mass tag labeling was used to identify proteins in individual or pooled control samples to determine technical and biological variability. To determine effect size and perform power analysis, control and proliferative diabetic retinopathy samples were analyzed across four 10-plexes. Pooled samples were used to normalize the data across plexes and generate a single data matrix for downstream analysis. RESULTS: The total number of unique proteins identified was 1152 in experiment 1, 989 of which were measured in all samples. In experiment 2, 1191 proteins were identified, 727 of which were measured across all samples in all plexes. Data are available via ProteomeXchange with identifier PXD025986. Spearman correlations of protein abundance estimations revealed minimal technical (0.99-1.00) and biological (0.94-0.98) variability. Each plex contained two unique pooled samples: one for normalizing across each 10-plex, and one to internally validate the normalization algorithm. Spearman correlation of the validation pool following normalization was 0.86-0.90. Principal component analysis revealed stratification of samples by disease and not by plex. Subsequent differential expression and pathway analyses demonstrated significant activation of metabolic pathways and inhibition of neuroprotective pathways in proliferative diabetic retinopathy samples relative to controls. CONCLUSIONS: This study demonstrates a feasible, rigorous, and scalable method that can be applied to future proteomic studies of vitreous and identifies previously unrecognized metabolic pathways that advance understanding of diabetic retinopathy.

19.
Mol Cell Proteomics ; 20: 100171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737085

RESUMO

Tandem mass spectrometry (MS/MS)-based phosphoproteomics is a powerful technology for global phosphorylation analysis. However, applying four computational pipelines to a typical mass spectrometry (MS)-based phosphoproteomic dataset from a human cancer study, we observed a large discrepancy among the reported phosphopeptide identification and phosphosite localization results, underscoring a critical need for benchmarking. While efforts have been made to compare performance of computational pipelines using data from synthetic phosphopeptides, evaluations involving real application data have been largely limited to comparing the numbers of phosphopeptide identifications due to the lack of appropriate evaluation metrics. We investigated three deep-learning-derived features as potential evaluation metrics: phosphosite probability, Delta RT, and spectral similarity. Predicted phosphosite probability is computed by MusiteDeep, which provides high accuracy as previously reported; Delta RT is defined as the absolute retention time (RT) difference between RTs observed and predicted by AutoRT; and spectral similarity is defined as the Pearson's correlation coefficient between spectra observed and predicted by pDeep2. Using a synthetic peptide dataset, we found that both Delta RT and spectral similarity provided excellent discrimination between correct and incorrect peptide-spectrum matches (PSMs) both when incorrect PSMs involved wrong peptide sequences and even when incorrect PSMs were caused by only incorrect phosphosite localization. Based on these results, we used all the three deep-learning-derived features as evaluation metrics to compare different computational pipelines on diverse set of phosphoproteomic datasets and showed their utility in benchmarking performance of the pipelines. The benchmark metrics demonstrated in this study will enable users to select computational pipelines and parameters for routine analysis of phosphoproteomics data and will offer guidance for developers to improve computational methods.


Assuntos
Aprendizado Profundo , Fosfopeptídeos/análise , Animais , Benchmarking , Linhagem Celular , Humanos , Camundongos , Fosforilação , Proteômica/métodos
20.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534465

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenômica , Adenocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudos de Coortes , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Dosagem de Genes , Genoma Humano , Glicólise , Glicoproteínas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Pancreáticas/diagnóstico , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Especificidade por Substrato , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA