Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 50(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367164

RESUMO

The synthesis and release of glucocorticoids in living organisms are related to their response to unfavorable stressful conditions in order to maintain homeostatic functions and survive. One such hormone in humans is cortisol, which is produced by the hypothalamic­pituitary­adrenal cortex axis and binds with the glucocorticoid receptor (GR) following its secretion. GR controls a number of distinct gene networks. Non­coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non­coding RNAs (lncRNAs), regulate the expression and function of GR, having a considerable impact on various biological processes and treatment approaches for numerous disorders. In the present review, the GR pathways and signaling as part of the stress response system are discussed. A detailed report on the role of miRNAs and lncRNAs in glucocorticoid signaling is also presented.


Assuntos
Fenômenos Biológicos , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Glucocorticoides , Redes Reguladoras de Genes , Receptores de Glucocorticoides/genética
2.
Dev Cell ; 57(20): 2426-2443.e6, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283392

RESUMO

Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and protein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.


Assuntos
Músculo Liso Vascular , Transcriptoma , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Transcriptoma/genética , Miócitos de Músculo Liso/metabolismo , Aorta , Células Cultivadas
3.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35452595

RESUMO

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Pericitos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/complicações , Doenças Cardiovasculares/virologia , Células Endoteliais , Camundongos , Pericitos/metabolismo , SARS-CoV-2
4.
Int J Mol Med ; 49(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34791505

RESUMO

RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine­tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non­coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.


Assuntos
Doenças Cardiovasculares/genética , Epigênese Genética , Epigenômica/métodos , Edição de RNA , RNA/metabolismo , Doenças Cardiovasculares/terapia , Humanos , Espectrometria de Massas , Metilação , RNA/genética
6.
Nat Commun ; 11(1): 3953, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769974

RESUMO

Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes.


Assuntos
Diferenciação Celular , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miócitos de Músculo Liso/fisiologia , Pericitos/fisiologia , Animais , Separação Celular , Vasos Coronários/citologia , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Citometria de Fluxo , Intestinos/irrigação sanguínea , Intestinos/citologia , Masculino , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Músculo Liso Vascular/citologia , Miocárdio/citologia , Miócitos de Músculo Liso/citologia , Pericitos/citologia , RNA-Seq , Análise de Célula Única , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/citologia
7.
Trends Endocrinol Metab ; 26(9): 502-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26197955

RESUMO

Hypoxia and its intricate regulation are at the epicenter of cardiovascular research. Mediated by hypoxia-inducible factors as well as by several microRNAs, recently termed 'hypoxamiRs', hypoxia affects several cardiac pathophysiological processes. Hypoxia is the driving force behind the regulation of the characteristic metabolic switch from predominant fatty acid oxidation in the healthy heart to glucose utilization in the failing myocardium, but also instigates reactivation of the fetal gene program, induces the cardiac hypertrophy response, alters extracellular matrix composition, influences mitochondrial biogenesis, and impacts upon myocardial contractility. HypoxamiR regulation adds a new level of complexity to this multitude of hypoxia-mediated effects, rendering the understanding of the hypoxic response a fundamental piece in solving the cardiovascular disease puzzle.


Assuntos
Metabolismo Energético , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , MicroRNAs/metabolismo , Animais , Humanos , Miocárdio/metabolismo , RNA Longo não Codificante
9.
Nat Cell Biol ; 15(11): 1282-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24161931

RESUMO

Although aberrant reactivation of embryonic gene programs is intricately linked to pathological heart disease, the transcription factors driving these gene programs remain ill-defined. Here we report that increased calcineurin/Nfat signalling and decreased miR-25 expression integrate to re-express the basic helix-loop-helix (bHLH) transcription factor dHAND (also known as Hand2) in the diseased human and mouse myocardium. In line, mutant mice overexpressing Hand2 in otherwise healthy heart muscle cells developed a phenotype of pathological hypertrophy. Conversely, conditional gene-targeted Hand2 mice demonstrated a marked resistance to pressure-overload-induced hypertrophy, fibrosis, ventricular dysfunction and induction of a fetal gene program. Furthermore, in vivo inhibition of miR-25 by a specific antagomir evoked spontaneous cardiac dysfunction and sensitized the murine myocardium to heart failure in a Hand2-dependent manner. Our results reveal that signalling cascades integrate with microRNAs to induce the expression of the bHLH transcription factor Hand2 in the postnatal mammalian myocardium with impact on embryonic gene programs in heart failure.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/fisiologia , Fatores de Transcrição NFATC/fisiologia , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Processamento Pós-Transcricional do RNA , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
10.
Cell Metab ; 18(3): 341-54, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24011070

RESUMO

Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demonstrate that under hemodynamic stress, cardiac hypoxia activates DNM3os, a noncoding transcript that harbors the microRNA cluster miR-199a∼214, which shares PPARδ as common target. To address the significance of miR-199a∼214 induction and concomitant PPARδ repression, we performed antagomir-based silencing of both microRNAs and subjected mice to biomechanical stress to induce heart failure. Remarkably, antagomir-treated animals displayed improved cardiac function and restored mitochondrial fatty acid oxidation. Taken together, our data suggest a mechanism whereby miR-199a∼214 actively represses cardiac PPARδ expression, facilitating a metabolic shift from predominant reliance on fatty acid utilization in the healthy myocardium toward increased reliance on glucose metabolism at the onset of heart failure.


Assuntos
Ácidos Graxos/metabolismo , Hipóxia , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Miocárdio/metabolismo , PPAR delta/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Ácidos Graxos/química , Perfilação da Expressão Gênica , Inativação Gênica , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , Mitocôndrias/genética , Família Multigênica , Oligonucleotídeos Antissenso/metabolismo , Oxirredução , PPAR delta/antagonistas & inibidores , PPAR delta/genética , Estresse Mecânico
11.
PLoS One ; 8(2): e57800, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460909

RESUMO

MicroRNAs (miRNAs) are a class of non-coding RNAs of ∼22 nucleotides in length, and constitute a novel class of gene regulators by imperfect base-pairing to the 3'UTR of protein encoding messenger RNAs. Growing evidence indicates that miRNAs are implicated in several pathological processes in myocardial disease. The past years, we have witnessed several profiling attempts using high-density oligonucleotide array-based approaches to identify the complete miRNA content (miRNOME) in the healthy and diseased mammalian heart. These efforts have demonstrated that the failing heart displays differential expression of several dozens of miRNAs. While the total number of experimentally validated human miRNAs is roughly two thousand, the number of expressed miRNAs in the human myocardium remains elusive. Our objective was to perform an unbiased assay to identify the miRNOME of the human heart, both under physiological and pathophysiological conditions. We used deep sequencing and bioinformatics to annotate and quantify microRNA expression in healthy and diseased human heart (heart failure secondary to hypertrophic or dilated cardiomyopathy). Our results indicate that the human heart expresses >800 miRNAs, the majority of which not being annotated nor described so far and some of which being unique to primate species. Furthermore, >250 miRNAs show differential and etiology-dependent expression in human dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM). The human cardiac miRNOME still possesses a large number of miRNAs that remain virtually unexplored. The current study provides a starting point for a more comprehensive understanding of the role of miRNAs in regulating human heart disease.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Miocárdio/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/metabolismo , Miocárdio/patologia
12.
PLoS One ; 7(6): e36799, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723831

RESUMO

BACKGROUND: The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. METHODOLOGY/PRINCIPAL FINDING: Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. CONCLUSION: Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.


Assuntos
Núcleo Celular/metabolismo , MAP Quinase Quinase 1/metabolismo , Miocárdio/metabolismo , PPAR alfa/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Linhagem Celular , Ativação Enzimática , Expressão Gênica , Humanos , MAP Quinase Quinase 1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PPAR alfa/genética , PPAR delta/metabolismo , PPAR beta/metabolismo , Ligação Proteica , Transcrição Gênica
13.
J Biol Chem ; 286(16): 14598-607, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21245137

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARß/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions.


Assuntos
Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , PPAR alfa/química , Animais , Apoptose , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Hipertrofia , Lipídeos/química , Camundongos , Microscopia de Fluorescência/métodos , Miocárdio/metabolismo , Miocárdio/patologia , Isoformas de Proteínas , Ratos , Traumatismo por Reperfusão
14.
Nat Cell Biol ; 12(12): 1220-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21102440

RESUMO

MicroRNAs (miRs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRs in myocardial disease processes. Here we show that miR-199b is a direct calcineurin/NFAT target gene that increases in expression in mouse and human heart failure, and targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a), constituting a pathogenic feed forward mechanism that affects calcineurin-responsive gene expression. Mutant mice overexpressing miR-199b, or haploinsufficient for Dyrk1a, are sensitized to calcineurin/NFAT signalling or pressure overload and show stress-induced cardiomegaly through reduced Dyrk1a expression. In vivo inhibition of miR-199b by a specific antagomir normalized Dyrk1a expression, reduced nuclear NFAT activity and caused marked inhibition and even reversal of hypertrophy and fibrosis in mouse models of heart failure. Our results reveal that microRNAs affect cardiac cellular signalling and gene expression, and implicate miR-199b as a therapeutic target in heart failure.


Assuntos
Calcineurina/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/metabolismo , Ratos , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA