Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869711

RESUMO

Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated ß-galactosidase activity (SA-ß-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-ß-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-ß-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.

2.
Nat Commun ; 15(1): 4795, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862487

RESUMO

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Voo Espacial , Simulação de Ausência de Peso , Humanos , Animais , Camundongos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Quercetina/farmacologia , Transdução de Sinais , Células Matadoras Naturais/imunologia , Ausência de Peso , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Aprendizado de Máquina , Masculino , Feminino , Inflamação/imunologia , Imunidade Inata
3.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38187756

RESUMO

Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated ß-galactosidase activity (SA-ß-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by i) quantifying colorimetric SA-ß-Gal via optical density; ii) implementing staining background controls; iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-ß-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.

4.
Biochem J ; 480(5): 363-384, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36862427

RESUMO

Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Ratos , Animais , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/farmacologia
5.
Sci Rep ; 12(1): 14804, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045139

RESUMO

Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.


Assuntos
Histona Acetiltransferases , Processamento Pós-Transcricional do RNA , Animais , Histona Acetiltransferases/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
6.
Methods Mol Biol ; 2497: 11-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771433

RESUMO

The mitochondrial membrane potential (ΔψM) is the major component of the bioenergetic driving force responsible for most cellular ATP produced, and it controls a host of biological processes. In intact cells, assay readouts with commonly used fluorescence ΔψM probes are distorted by factors other than ΔψM. Here, we describe a protocol to calculate both ΔψM and plasma membrane potential (ΔψP) in absolute millivolts in intact single cells, or in populations of adherent, cultured cells. Our approach generates unbiased data that allows comparison of ΔψM between cell types with different geometry and ΔψP, and to follow ΔψM in time when ΔψP fluctuates. The experimental paradigm results in fluorescence microscopy time courses using a pair of cationic and anionic probes with internal calibration points that are subsequently computationally converted to millivolts on an absolute scale. The assay is compatible with wide field, confocal or two-photon microscopy. The method given here is optimized for a multiplexed, partial 96-well microplate format to record ΔψP and ΔψM responses for three consecutive treatment additions.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Células Cultivadas , Corantes Fluorescentes/metabolismo , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo
7.
Front Oncol ; 10: 1703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224868

RESUMO

Cancer growth is predicted to require substantial rates of substrate catabolism and ATP turnover to drive unrestricted biosynthesis and cell growth. While substrate limitation can dramatically alter cell behavior, the effects of substrate limitation on total cellular ATP production rate is poorly understood. Here, we show that MCF7 breast cancer cells, given different combinations of the common cell culture substrates glucose, glutamine, and pyruvate, display ATP production rates 1.6-fold higher than when cells are limited to each individual substrate. This increase occurred mainly through faster oxidative ATP production, with little to no increase in glycolytic ATP production. In comparison, non-transformed C2C12 myoblast cells show no change in ATP production rate when substrates are limited. In MCF7 cells, glutamine allows unexpected access to oxidative capacity that pyruvate, also a strictly oxidized substrate, does not. Pyruvate, when added with other exogenous substrates, increases substrate-driven oxidative ATP production, by increasing both ATP supply and demand. Overall, we find that MCF7 cells are highly flexible with respect to maintaining total cellular ATP production under different substrate-limited conditions, over an acute (within minutes) timeframe that is unlikely to result from more protracted (hours or more) transcription-driven changes to metabolic enzyme expression. The near-identical ATP production rates maintained by MCF7 and C2C12 cells given single substrates reveal a potential difficulty in using substrate limitation to selectively starve cancer cells of ATP. In contrast, the higher ATP production rate conferred by mixed substrates in MCF7 cells remains a potentially exploitable difference.

8.
Am J Respir Cell Mol Biol ; 56(1): 38-49, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559927

RESUMO

Lung cellular senescence and inflammatory response are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) when cigarette smoke (CS) is the main etiological factor. Telomere dysfunction is induced by either critical shortening or disruption of the shelterin complex, leading to cellular senescence. However, it remains unknown whether disruption of the shelterin complex is responsible for CS-induced lung cellular senescence. Here we show that telomere protection protein 1 (TPP1) levels are reduced on telomeres in lungs from mice with emphysema, as well as in lungs from smokers and from patients with COPD. This is associated with persistent telomeric DNA damage, leading to cellular senescence. CS disrupts the interaction of TPP1 with the Sirtuin 1 (Sirt1) complex, leading to increased TPP1 acetylation and degradation. Lung fibroblasts deficient in Sirt1 or treated with a selective Sirt1 inhibitor exhibit increased cellular senescence and decreased TPP1 levels, whereas Sirt1 overexpression and pharmacological activation protect against CS-induced TPP1 reduction and telomeric DNA damage. Our findings support an essential role of TPP1 in protecting CS-induced telomeric DNA damage and cellular senescence, and therefore provide a rationale for a potential therapy for COPD, on the basis of the shelterin complex, in attenuating cellular senescence.


Assuntos
Senescência Celular , Proteínas de Ligação a DNA/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Complexo Shelterina/metabolismo , Sirtuína 1/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Acetilação , Animais , Células Cultivadas , Dano ao DNA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fumar/efeitos adversos
9.
Front Pharmacol ; 7: 391, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826243

RESUMO

Antagonism of CXCR2 receptors, predominately located on neutrophils and critical for their immunomodulatory activity, is an attractive pharmacological therapeutic approach aimed at reducing the potentially damaging effects of heightened neutrophil influx into the lung. The role CXCR2 in lung inflammation in response to cigarette smoke (CS) inhalation using the mutant mouse approach is not known. We hypothesized that genetic ablation of CXCR2 would protect mice against CS-induced inflammation and DNA damage response. We used CXCR2-/- deficient/mutant (knock-out, KO) mice, and assessed the changes in critical lung inflammatory NF-κB-driven chemokines released from the parenchyma of CS-exposed mice. The extent of tissue damage was assessed by the number of DNA damaging γH2AX positive cells. CXCR2 KO mice exhibited protection from heightened levels of neutrophils measured in BALF taken from mice exposed to CS. IL-8 (KC mouse) levels in the BALF from CS-exposed CXCR2 KO were elevated compared to WT. IL-6 levels in BALF were refractory to increase by CS in CXCR2 KO mice. There were no significant changes to MIP-2, MCP-1, or IL-1ß. Total levels of NF-κB were maintained at lower levels in CS-exposed CXCR2 KO mice compared to WT mice exposed to CS. Finally, CXCR2 KO mice were protected from lung cells positive for DNA damage response and senescence marker γH2AX. CXCR2 KO mice are protected from heightened inflammatory response mediated by increased neutrophil response as a result of acute 3 day CS exposure. This is also associated with changes in pro-inflammatory chemokines and reduced incursion of γH2AX indicating CXCR2 deficient mice are protected from lung injury. Thus, CXCR2 may be a pharmacological target in setting of inflammation and DNA damage in the pathogenesis of COPD.

10.
Int J Biochem Cell Biol ; 81(Pt B): 294-306, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27474491

RESUMO

Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.


Assuntos
Pulmão/fisiopatologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Espécies Reativas de Oxigênio , Humanos , Pulmão/imunologia , Oxirredução , Estresse Oxidativo
11.
Biochem Biophys Res Commun ; 477(4): 620-625, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27343559

RESUMO

Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping.


Assuntos
Aerossóis/toxicidade , Cobre/química , Fragmentação do DNA/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Nanopartículas Metálicas/toxicidade , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-9/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
FASEB J ; 29(7): 2912-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25792665

RESUMO

Cigarette smoke (CS)-induced cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The molecular mechanism by which CS induces cellular senescence is unknown. Here, we show that CS stress (exposure of primary lung cells to CS extract 0.2-0.75% with a half-maximal inhibitory concentration of ∼0.5%) led to impaired mitophagy and perinuclear accumulation of damaged mitochondria associated with cellular senescence in both human lung fibroblasts and small airway epithelial cells (SAECs). Impaired mitophagy was attributed to reduced Parkin translocation to damaged mitochondria, which was due to CS-induced cytoplasmic p53 accumulation and its interaction with Parkin. Impaired Parkin translocation to damaged mitochondria was also observed in mouse lungs with emphysema (6 months CS exposure, 100 mg TPM/m(3)) as well as in lungs of chronic smokers and patients with COPD. Primary SAECs from patients with COPD also exhibited impaired mitophagy and increased cellular senescence via suborganellar signaling. Mitochondria-targeted antioxidant (Mito-Tempo) restored impaired mitophagy, decreased mitochondrial mass accumulation, and delayed cellular senescence in Parkin-overexpressing cells. In conclusion, defective mitophagy leads to CS stress-induced lung cellular senescence, and restoring mitophagy delays cellular senescence, which provides a promising therapeutic intervention in chronic airway diseases.


Assuntos
Senescência Celular , Mitofagia , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumar/efeitos adversos , Animais , Antioxidantes/farmacologia , Estudos de Casos e Controles , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fumar/metabolismo , Fumar/patologia , Ubiquitina-Proteína Ligases/metabolismo
13.
PLoS One ; 10(2): e0116732, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658421

RESUMO

Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Nicotina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Mucosa Respiratória/efeitos dos fármacos , Aerossóis/efeitos adversos , Animais , Lavagem Broncoalveolar , Linhagem Celular , Cotinina/sangue , Citometria de Fluxo , Humanos , Camundongos , Nicotina/administração & dosagem , Soluções/administração & dosagem , Soluções/toxicidade , Volatilização
14.
Environ Pollut ; 198: 100-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25577651

RESUMO

To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 µm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment.


Assuntos
Cobre/análise , Sistemas Eletrônicos de Liberação de Nicotina , Saúde Ambiental , Oxidantes , Aerossóis , Substâncias Perigosas , Nicotina , Tamanho da Partícula , Medição de Risco , Fumaça/análise , Nicotiana
15.
Age (Dordr) ; 36(3): 9626, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24557832

RESUMO

Advanced age is characterized by increased incidence of many chronic, noninfectious diseases that impair the quality of living of the elderly and pose a major burden on the healthcare systems of developed countries. These diseases are characterized by impaired or altered function at the tissue and cellular level, which is a hallmark of the aging process. Age-related impairments are likely due to loss of homeostasis at the cellular level, which leads to the accumulation of dysfunctional organelles and damaged macromolecules, such as proteins, lipids, and nucleic acids. Intriguingly, aging and age-related diseases can be delayed by modulating nutrient signaling pathways converging on the target of rapamycin (TOR) kinase, either by genetic or dietary intervention. TOR signaling influences aging through several potential mechanisms, such as autophagy, a degradation pathway that clears the dysfunctional organelles and damaged macromolecules that accumulate with aging. Autophagy substrates are targeted for degradation by associating with p62/SQSTM1, a multidomain protein that interacts with the autophagy machinery. p62/SQSTM1 is involved in several cellular processes, and its loss has been linked to accelerated aging and to age-related pathologies. In this review, we describe p62/SQSTM1, its role in autophagy and in signaling pathways, and its emerging role in aging and age-associated pathologies. Finally, we propose p62/SQSTM1 as a novel target for aging studies and age-extending interventions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento/genética , Autofagia/genética , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/metabolismo , Humanos , Proteínas Imediatamente Precoces , Proteína Sequestossoma-1 , Transdução de Sinais
16.
Future Virol ; 8(1): 81-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23596462

RESUMO

Aging is a complicated process characterized by a progressive loss of homeostasis, which results in an increased vulnerability to multiple diseases. HIV-1-infected patients demonstrate a premature aging phenotype and develop certain age-related diseases earlier in their lifespan than what is seen in the general population. Age-related comorbidities may include the development of bone disease, metabolic disorders, neurologic impairment and immunosenescence. Age also appears to have an effect on traditional markers of HIV-1 disease progression, including CD4+ T-cell count and viral load. These effects are not only a consequence of HIV-1 infection, but in many cases, are also linked to antiretroviral therapy. This review summarizes the complex interplay between HIV-1 infection and aging, and the impact that aging has on markers of HIV-1 disease.

17.
Cell Cycle ; 9(18): 3798-806, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20890109

RESUMO

The Ku70/80 heterodimer is central to non-homologous end joining repair of DNA double-strand breaks and the Ku80 gene appears to be essential for human but not rodent cell survival. The Ku70/80 heterodimer is located at telomeres but its precise function in telomere maintenance is not known. In order to examine the role of Ku80 beyond DNA repair in more detail, we have taken a knockdown approach using a human fibroblast strain. Following targeted Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome and degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-chromatin bound TRF2 is targeted to the proteasome.


Assuntos
Antígenos Nucleares/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Antígenos Nucleares/genética , Proteínas de Ligação a DNA/genética , Dimerização , Fibroblastos/metabolismo , Humanos , Autoantígeno Ku , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Interferência de RNA , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA